
Using the toolkit
Ginan documentation
March, 2022

Document approvals

Role Name Signature Date

Prepared: John Donovan – 18-3-2022

Prepared: Ken Harima – 18-3-2022

Approved: Simon McClusky – 18-3-2022

Document history

Version Dated Author Notes

Beta 18-3-2022 John Donovan, Ken
Harima Ginan Beta release

– – – –

Contents

Contents ii

1 Introduction 1
1.1 The Positioning Australia Program . 1
1.2 Ginan - Analysis Centre Software . 2
1.3 This document - POD and PEA . 3

2 Using the POD Module 5
2.1 Using the POD for orbit fitting . 5
2.2 Using the POD for orbit integration/prediction 6

3 POD Examples 7
3.1 Processing Example 1 . 7
3.2 Processing Example 2 - ECOM2 SRP . 7
3.3 Example 3 - (examples/ex23_pod_prd_gps.yaml) 8
3.4 Example 4 - (examples/ex24_pod_ic_gps.yaml): 8
3.5 Example 5 - (examples/ex25_pod_fit_gps.yaml): 8
3.6 Example 6 - (examples/ex26_pod_fit_meo.yaml): 8

4 YAML Configuration for POD 9
4.1 POD processing options (pod_options) . 9
4.2 Time scale(time_scale) . 10
4.3 Initial Conditions (IC) . 10

4.3.1 IC input format (ic_input_filename) 10
4.3.2 IC input reference system (ic_input_refsys) 11

4.4 Using Pseudo observations . 12
4.5 Orbit arc length . 12
4.6 External Orbit Comparison . 12

4.6.1 External orbit reference frame (ext_orbit_frame) 13
4.7 Earth Orientation Parameters . 15

4.7.1 EOP type . 15
4.7.2 IAU Precession-Nutation model . 16

4.8 Input files . 16
4.9 Output options . 17
4.10 Variational Equation Options . 18
4.11 General Options . 18
4.12 Apriori solar radiation models . 19

4.12.1 Estimated Solar radiation models . 19
4.12.2 gravity_model . 20
4.12.3 stochastic pulse (pulse) . 20

ii Using the toolkit

4.13 Inclusions/Exclusions . 22
4.14 EQM/VEQ options . 22

4.14.1 Integration Step . 22
4.14.2 Gravity Field . 23
4.14.3 planetary_perturbations: . 23
4.14.4 tidal_effects: . 24

4.15 relativistic_effects: . 25
4.16 non_gravitational_effects: . 26

4.16.1 Models to be applied: . 26
4.16.2 Empirical parameters . 27

4.17 overides* . 28

5 Overview of the PEA 31
5.1 Data Input and Synchronisation . 31

5.1.1 Config . 31
5.1.2 Product Input . 31
5.1.3 Metadata Input . 31
5.1.4 Observation Data Input . 31
5.1.5 Initialisation of Objects . 32

5.2 Preprocessor . 32
5.3 Precise Point Positioning . 32

5.3.1 Force and Dynamic Models . 32
5.3.2 Orbit and State Prediction . 33
5.3.3 Phenomena Modelling + Estimation 33
5.3.4 Initialisation of Parameters . 33
5.3.5 Robust Kalman Filter . 33
5.3.6 RTS Smoothing . 34
5.3.7 Integer Ambiguity Resolution . 34
5.3.8 Product calculation . 34

5.4 Post-processing . 34
5.4.1 Smoothing . 34
5.4.2 Minimum Constraints . 34
5.4.3 Unit Testing . 35
5.4.4 Logging . 35

6 Using PEA in network mode 37
6.1 Processing a Global Network to Adjust Satellite Positions 37
6.2 Post process estimation of Satellite clocks and biases 38
6.3 Real-time estimation of Satellite clocks and biases 39
6.4 Post process estimation of atmospheric delays 40

7 Using PEA in user mode 43
7.1 Receiver position . 43
7.2 Receiver clock . 44
7.3 Tropospheric delays . 44
7.4 Dual frequency PPP with floating ambiguities 45
7.5 Single frequency PPP . 46
7.6 Dual frequency PPP with ambiguity resolution 46
7.7 Real-time PPP . 47

Using the toolkit iii

8 PEA examples 49

9 PEA Configuration File - YAML 51
9.1 YAML Syntax . 51
9.2 Default Values . 51
9.3 Globbing . 51
9.4 Wildcard Tags . 51
9.5 input_files: . 52
9.6 station_data: . 53

9.6.1 Post processing: . 53
9.6.1.1 Real-time processing: . 54

9.7 output_files: . 55
9.8 processing_options: . 58
9.9 troposphere: . 61
9.10 ionosphere: . 61
9.11 unit_test_options: . 62
9.12 ionosphere_filter_parameters: . 62
9.13 output_options: . 63
9.14 user_filter_parameters, network_filter_parameters, ionosphere_filter_parameters: 63
9.15 default_filter_parameters: . 64
9.16 minimum_constraints: . 64
9.17 ambiguity_resolution_options: . 64

10 Attribution 67

iv Using the toolkit

1 Introduction
1.1 The Positioning Australia Program
The Australian Government is making a significant investment in the Positioning Australia
program through Geoscience Australia. The program contains three major projects:

• The commercial procurement and operation of a Satellite Based Augmentation
System (SBAS) called SouthPAN which will enhance positioning across the region
through the provision of extra GNSS signals and data delivered from a
geostationary satellite.

• The enhancement of the National Positioning Infrastructure Capability (NPIC)
which will see upgrades to and an expansion of the Global Navigation Satellite
System (GNSS) Continuously Operating Reference Station (CORS) network
across the South Pacific and Antarctica.

• Ginan is an open source Precise Point Positioning (PPP) toolkit. It can produce
PPP position correction products and, operating in another mode, use GNSS
observations and those correction products to determine positions with an
accuracy in the centimetre range.

The program is summarised in Figure 1.1 below.

Figure 1.1: The three main projects in the Positioning Australia program.

Using the toolkit 1

1.2 Ginan - Analysis Centre Software
Ginan, is being rolled out in a phased approach and will offer products in four distinct
categories:

• The software itself. Ginan is open-source software that GA has hosted on a GitHub
repository.

• Standard precise point positioning (PPP) product files. An operational version of
Ginan, maintained by Geoscience Australia (GA), will produce on a 24 X 7 basis,
a range of standard PPP product files including, for example, a precise orbits and
clocks file in SP3 format.

• Precise point positioning correction messages. An operational version of Ginan,
maintained by GA, will stream over the internet on a 24 X 7 basis, a range of PPP
correction messages in the RTCM3 message format.

• New PPP products and applications yet to be defined. The Ginan toolkit gives GA
the ability to offer new PPP products, yet to be defined, but which, in collaboration
with users, may spawn new applications and commercial opportunities.

Ginan is summarised in Figure 1.2 below.

Figure 1.2: The Ginan product offering.

2 Using the toolkit

1.3 This document - POD and PEA
This document forms part of the Ginan documentation suite. The Ginan software toolkit
consist of two main components. The precise orbit determination (POD) component es-
timates precise satellite position and orbital parameters, while the parameter estimation
algorithm (PEA) monitors systematic biases associated with GNSS signals. The Ginan
software uses precise point positioning(PPP) techniques to process GNSS signals. PPP
was originally developed as a GNSS based positioning method for calculating location of
autonomous receivers with high levels of accuracy and precision. PPP aims to calculate
the end user position by rigorously modelling and/or estimating error sources in GNSS
measurements. The systematic of errors in GNSS signals can be summarised as:

• Satellite state estimation errors: position, clock offset, hardware biases, antenna
effects

• Receiver state estimation errors: position, clock offset, hardware biases, antenna
effects

• Atmospheric effects: ionospheric propagation delay, tropospheric propagation delay

• Other (model-able) environmental effects: Relativistic corrections, phase windup

The various components of the Ginan software toolkit are designed to model or estimate
these errors as parameters. Figure 1.3 below illustrates the way the Ginan components
interact to estimate these parameters.

Figure 1.3: Ginan software components

In the example illustrated by Figure 1.3:

1. The POD in orbit fitting mode is used to calculate an a-priori position and the lin-
earization partials of orbit parameters

2. The PEA, in network mode, estimate orbital parameters from orbit partials

Using the toolkit 3

3. The POD, use the orbital parameters to estimate and predict precise satellite posi-
tions

4. The PEA, in network mode, is used to estimate wide-area parameters: satellite clock
offsets, satellite hardware bias and atmospheric delays

5. The PEA, in end-user mode, is used to calculate local parameters like receiver po-
sition, receiver clock offset and local atmospheric delays

Other parameters, such as antenna, phase windup and relativistic effects are calculated
from predefined models.

4 Using the toolkit

2 Using the POD Module
POD uses configuration files in YAML to control its processing. After installing the soft-
ware and its dependencies (see the README.md in the GitHub repository) and compiling
building the POD application, POD processing can be started by typing the command.

1 ./pod -y <path_to_config_file >

Details on the configuration parameters included in YAML files can be found in chapter
4. Configuration files corresponding to the examples in this section can be found in the
ginan/examples directory.

The POD module has two main modes of operation, the orbit fitting mode and the orbit
integration/prediction mode. In orbit fitting mode, precise orbit parameters are calculated
from, potentially inaccurate, satellite position pseudo-observations. In orbit integration
mode, precise satellite positions are estimated/predicted from precise orbit parameters.

2.1 Using the POD for orbit fitting
The orbit fittingmode can be selected by setting the pod_mode_fit to true and ic_input_format:
sp3 to true. In this mode, the POD will take satellite position pseudo-measurements from
a SP3 formatted file and estimate the orbit state of each satellite contained in the SP3
file. The SP3 file containing a priory satellite position needs to be specified as the pseu-
dobs_orbit_filename parameter. The orbit state in POD is represented by a set of param-
eters consisting of

• Satellite position (in ITRF or ICRF) at the first epoch in the SP3 file

• Satellite velocity (in ITRF or ICRF) at the first epoch in the SP3 file

• Up to 9 parameters describing the Solar Radiation Pressure over the fitting time

These initial conditions, and the models described in Ginan Science Manual will allow for
the precise determination of satellite positions over the fitting arc (set by the orbit_arc_determination
parameter).

The main outputs from this mode of operation are the a-posteriori satellite position in
SP3 format, and the orbit partials of satellite positions with respect to the initial condi-
tions. The output SP3 file which can be found on output_directory/gagWWWWD.sp3
where WWWW is the GPS week and D is the GPS day of the first epoch on the SP3
files. The orbit partials are written in Ginan’s proprietary Initial Conditions File (ICF) for-
mat, and can be found in output_directory/gagWWWWD_orbit_partials.out. Configuration
files, ex21_pod_fit_gps.yaml and ex22_pod_fit_gnss.yaml, for this mode of operation are
included in the Ginan examples folder.

Using the toolkit 5

2.2 Using the POD for orbit integration/prediction
The orbit fittingmode can be selected by setting the pod_mode_ic_int to true and ic_input_format_icf
to true. In this mode, the POD will take the initial conditions contained in the ICF for-
matted files and propagates the satellite positions forward over the time period speci-
fied by the sum of orbit_arc_determination and orbit_arc_prediction parameters. It also
propagates the satellite position backwards by a number of hours specified by the or-
bit_arc_backwards parameter. The ICF file containing the satellites initial condition and
radiation pressure parameters needs to be specified as the ic_input_format_ic_filename
parameter.

It is to note that the orbit fitting mode will also use the orbit integration operation after
estimating the initial conditions from pseudo-observations. The mode pod_mode_fit will
only integrated for a number of hours specified by orbit_arc_determination, but will also
do the backwards arc specified by orbit_arc_backwards and a prediction arc specified by
orbit_arc_prediction. Selecting the pod_mode_predict will propagate the initial
conditions a number of hours specified by the sum of orbit_arc_determination and
orbit_arc_prediction. The integrated/predicted satellite position will be output to a SP3
formatted file located in output_directory/gagWWWWD.sp3.
The example configuration file to perform orbit integration/prediction from SP3 files is
ex23_pod_prd_gps.yaml. The example configuration file to perform orbit
integration/prediction from ICF files is ex24_pod_ic_gps.yaml. Both are located in the
Ginan examples folder.

6 Using the toolkit

3 POD Examples
3.1 Processing Example 1
In this example the pod will perform a dynamic orbit determination for the GPS
constellation over a 24 hour arc. The full gravitational force models are applied, with a
cannonball model SRP model.

To run the POD, change to the Ginan examples directory, then ...
1 ../bin/pod -y ex21_pod_fit_gps.yaml

This should output the following to stdout (first satellite (G01) only shown)
1 PRN: G01, SVN: 63, BLK TYP: GPS-IIF, BLKID: 8, TX PWR: 240, MASS:

1633.000
2 IC: 57842.000000000000 0.0000000000000000

13449938.290000001 -15187647.773999998 16895359.906999998
-59.097715290263295 2181.6586220953614 2021.8495117835701

3 Orbit Determination
4 day of year 2017 89 G01 beta 58.757853105247371
5 ECOM1 SRP MODEL IS ACTIVATED
6 Orbit residuals: ICRF
7 RMS-XYZ ICRF FIT G01 0.0050 0.0035 0.0031
8 External Orbit comparison
9 Orbit comparison: ICRF

10 RMS-RTN ICRF CMP G01 0.0037 0.0035 0.0046
11 RMS-XYZ ICRF CMP G01 0.0050 0.0035 0.0031
12 Orbit comparison: ITRF
13 RMS-XYZ ITRF CMP G01 0.0043 0.0044 0.0031
14

15 The results above show that our orbits arcs, over 24 hours, are currently
within 0.5 cm of the final combined IGS orbit.

The processing also produces the following output files in the yaml specified output
directory (ex21 in this case)

��� POD.status processing report file
��� gagWWWWD.erp Earth Rotation Parameters file
��� gagWWWWD.obx ORBEX file resulting from the integration
��� gagWWWWD.sp3 sp3 file from all integration steps (backwards, fitting, prediction)
��� gagWWWWD_orbits_partials.out output IC file for pea
��� gagWWWWD_igsWWWWD_orbdiff_rtn.out differences in solutions in orbital frame components
��� gagWWWWD_igsWWWWD_orbitstat_(R|T|N).out statistical differences in solutions in orbital frame components

3.2 Processing Example 2 - ECOM2 SRP
In this example we will change the SRP model to use the ECOM2 model.

Using the toolkit 7

this yaml file has ECOM2 selected (see the SRP model selection). It runs over all the
gnss constellations, and will take about 10 minutes to run.

1 bin/pod -y ex22_pod_fit_gnss.yaml

This should output the following to stdout (G02 output selected)
1 PRN: G02, SVN: 61, BLK TYP: GPS-IIR-B, BLKID: 6, TX PWR: 60, MASS:

1080.000
2 IC: 58682.000000000000 0.0000000000000000

20561552.770000000 -13147270.275999999 -9692254.6860000007
-649.18898038938642 1190.7695703040808 -2831.8342814706266

3 Orbit Determination
4 day of year 2019 199 G02 beta -22.344868611303600
5 ECOM2 SRP MODEL IS ACTIVATED
6 Orbit residuals: ICRF
7 RMS-XYZ ICRF FIT G02 0.0055 0.0035 0.0035
8 External Orbit comparison
9 Orbit comparison: ICRF

10 RMS-RTN ICRF CMP G02 0.0043 0.0029 0.0052
11 RMS-XYZ ICRF CMP G02 0.0055 0.0035 0.0035
12 Orbit comparison: ITRF
13 RMS-XYZ ITRF CMP G02 0.0042 0.0050 0.0035

3.3 Example 3 - (examples/ex23_pod_prd_gps.yaml)
GPS IGS SP3 file orbit fitting, orbit prediction and comparison to next IGS SP3 file

3.4 Example 4 - (examples/ex24_pod_ic_gps.yaml):
Integration of POD initial conditions file generated by the PEA.

3.5 Example 5 - (examples/ex25_pod_fit_gps.yaml):
ECOM1+ECOM2 hybrid SRP model

3.6 Example 6 - (examples/ex26_pod_fit_meo.yaml):
week long integration of a middle earth orbit satellite (L51)

8 Using the toolkit

4 YAML Configuration for POD
The YAML configuration file for POD allows you to specify how and what data the POD
will process and what results and statistics to report at the end. In order to use the yaml
configuration file you will need to specify this at the command line, with the -y
<yaml_filename> otherwise it will default to the (no longer supported) traditional POD.in,
EQM.in and VEQ.in option files.

1 pod -y example_configuration.yaml

Listing 4.1: calling the yaml configuration file

4.1 POD processing options (pod_options)
These options will control how the pod will process the input files, with four different
options available. Only one of the options listed below can be set to true, the remainder
must be set to false.

Option Values Comments

pod_mode_fit true or false Orbit Determination
(pseudo-observations;
orbit fitting)

pod_mode_predict true or false Orbit Determination and
Prediction

pod_mode_eqm_int true or false Orbit Integration (Equa-
tion of Motion only)

pod_mode_ic_int true or false Orbit Integration and
Partials (Equation of
Motion and Variational
Equations) initial condi-
tion integration

Table 4.1: POD YAML: processing options

1 pod_options:
2 # Example YAML showing different processing options
3 #--
4 pod_mode_fit: true
5 pod_mode_predict: false
6 pod_mode_eqm_int: false
7 pod_mode_ic_int: false

Using the toolkit 9

Listing 4.2: pod_options yaml configuration example

1. pod_mode_fit - this is used to fit an existing sp3 file (this is sometimes referred to
as pseudo observations) with the parameters that are set later on. See pod
example 1

2. pod_mode_predict - determine an orbit from observations and then predict the
orbits path

3. pod_mode_eqm_int - determine the equations of motion only

4. pod_mode_ic_int -set up the initial conditions

4.2 Time scale(time_scale)

Option Values Comments

TT_time true or false Terrestrial (TT)

UTC_time true or false Universal (UTC)

GPS_time true or false Satellite (GPS)

TAI_time true or false Atomic (TAI)

Table 4.2: POD YAML: Time scale options

1 time_scale:
2 TT_time: false
3 UTC_time: false
4 GPS_time: true
5 TAI_time: false

Listing 4.3: time_scale yaml configuration example

4.3 Initial Conditions (IC)
4.3.1 IC input format (ic_input_filename)
one is true, the other is false. If icf selected the ic_filename value specifies the path to
the file.

1 ic_input_format:
2 sp3: true # Input a-priori orbit in sp3 format
3 icf: false # Input a-priori orbit in POD Initial Conditions File (

ICF) format
4 ic_filename: some_file

Listing 4.4: ic_input_format yaml configuration example

10 Using the toolkit

Option Values Comments

sp3 true or false sp3 format file

icf true or false initial conditions file

Table 4.3: POD YAML: Initial Conditions input format options

4.3.2 IC input reference system (ic_input_refsys)
reference system for the initial conditions one is true, the other is false.

Option Values Comments

itrf true or false terestrial

icrf true or false celestial

kepler true or false polar form of celestial

Table 4.4: POD YAML: Initial Conditions reference system

1 ic_input_refsys:
2 itrf: true # Initial Conditions Reference Frame: ITRF, ICRF
3 icrf: false # Initial Conditions Reference Frame: ITRF, ICRF
4 kepler: false

Listing 4.5: ic_input_refsys yaml configuration example

Using the toolkit 11

4.4 Using Pseudo observations
These options are used to control how pseudo observations are used by the POD.

Option Values Comments

pseudobs_orbit_filename filename path to the observations
file

pseudobs_interp_step int Interval (sec) of the in-
terpolated orbit

pseudobs_interp_points int Number of data points
used in Lagrange inter-
polation (at least 2 but
recommended 6 to 12)

IC_time datetime YYYY MM DD hh mm
ss.ss

Table 4.5: POD YAML: Using pseudo observations

1 pseudobs_orbit_filename: igs19424.sp3 # Pseudo observations orbit
filename

2 pseudobs_interp_step: 900 # Interval (sec) of the
interpolated orbit

3 pseudobs_interp_points: 12 # Number of data points used in
Lagrange interpolation

4 IC_time: 2017 03 10 03 0 0.0

Listing 4.6: pseudo observation model yaml configuration example

4.5 Orbit arc length
1 # Orbit arc length (in hours)
2 orbit_arc_determination: 24 # Orbit Estimation arc
3 orbit_arc_prediction: 12 # Orbit Prediction arc
4 orbit_arc_backwards: 2 # Orbit Propagation backwards arc

Listing 4.7: orbit arc length yaml configuration example

4.6 External Orbit Comparison
In this section only one of the following options listed below can be set to true, the
remainder must be set to false.

1

2 # External Orbit Comparison
3 ext_orbit_enabled: true
4 ext_orbit_type_sp3: false # Orbit data in sp3 format

12 Using the toolkit

Option Values Comments

orbit_arc_determination int number of hours to inte-
grate

orbit_arc_prediction int number of hours to pre-
dict at end of orbit arc

orbit_arc_backwards int number of hours to
check before start of
orbit arc

Table 4.6: POD YAML: Orbit arc options

5 # (including position and velocity
vectors)

6 ext_orbit_type_interp: true # Interpolated orbit based on
Lagrange

7 # interpolation of sp3 file
8 ext_orbit_type_kepler: false # Keplerian orbit
9 ext_orbit_type_lagrange: false # 3-day Lagrange interpolation

10 ext_orbit_type_position_sp3: false # Position and SP3 file
11 ext_orbit_filename: igs19424.sp3 # External (comparison) orbit

filename
12 ext_orbit_interp_step: 900 # Interval (sec) of the

interpolated/Kepler orbit
13 ext_orbit_interp_points: 12 # Number of data points used
14 # in Lagrange interpolation

Listing 4.8: orbit arc length yaml configuration example

4.6.1 External orbit reference frame (ext_orbit_frame)
1 ext_orbit_frame:
2 itrf: true # External orbit reference frame - ITRF
3 icrf: false # External orbit reference frame - ICRF
4 kepler: false

Listing 4.9: external orbit reference frame yaml configuration example

Using the toolkit 13

Option Values Comments

ext_orbit_enabled true or false

ext_orbit_type_sp3 true or false

ext_orbit_type_interp true or false

ext_orbit_type_kepler true or false

ext_orbit_type_lagrange true or false

ext_orbit_type_position_sp3 true or false

ext_orbit_filename filename path to the orbit file

ext_orbit_interp_step int Interval (sec) of the in-
terpolatedKepler orbit

ext_orbit_interp_points int Number of data points
used in Lagrange inter-
polation (at least 2 but
recommended 6 to 12)

Table 4.7: POD YAML: External orbit options

Option Values Comments

itrf true or false terrestrial

icrf true or false celestial

kepler true or false kepler orbital elements

Table 4.8: POD YAML: External orbit reference system

14 Using the toolkit

4.7 Earth Orientation Parameters
In this section only one of the following options listed below can be set to true, the
remainder must be set to false.

4.7.1 EOP type

Option Values Comments

EOP_soln_c04 true or false C04 is the IERS solution

EOP_soln_rapid true or false Rapid is the
rapidprediction cen-
ter solution

EOP_soln_igs true or false igs is the ultra-rapid so-
lution using partials. To
use this you need both
the rapid file and partials
file.

EOP_soln_c04_file filename

EOP_soln_rapid_file filename

ERP_soln_igs_file filename

EOP_soln_interp_points int

Table 4.9: POD YAML: Earth Orientation Parameter solution options

1 EOP_soln_c04: true # IERS C04 solution : EOP_sol = 1
2 EOP_soln_rapid: false # IERS rapid service/prediction center (RS/

PC) Daily : EOP_sol = 2
3 EOP_soln_igs: false # IGS ultra-rapid ERP + IERS RS/PC Daily (dX

,dY) : EOP_sol = 3. Need both rapid_file AND igs_file
4 EOP_soln_c04_file: eopc04_14_IAU2000.62-now
5 EOP_soln_rapid_file: finals2000A.daily
6 ERP_soln_igs_file: igu18543_12.erp
7 EOP_soln_interp_points: 4 # EOP solution interpolation points

Listing 4.10: eop estimation options

Using the toolkit 15

4.7.2 IAU Precession-Nutation model

Option Values Comments

eop_soln_interp_points int number of data points to
be used in an eop inter-
polation (at least 2!)

iau_model_2000 true or false

iau_model_2006 true or false

Table 4.10: POD YAML: EOP model options

1 # IAU Precession -Nutation model:
2 iau_model_2000: true # IAU2000A: iau_pn_model = 2000
3 iau_model_2006: false # IAU2006/2000A: iau_pn_model = 2006
4

Listing 4.11: Precession model

4.8 Input files

Option Values Comments

gravity_model_file filename

DE_fname_header filename Emphemeris header file

DE_fanme_data filename Emphemeris data file

ocean_tides_model_file filename

leapsec_filename filename leapseconds to be
added

satsinex_filename filename sinex file with satellite
meta-data

Table 4.11: POD YAML: Input files

1 # Gravity model file
2 gravity_model_file: goco05s.gfc

16 Using the toolkit

3 # goco05s.gfc, eigen-6s2.gfc, ITSG-Grace2014k.gfc
4

5 # Planetary/Lunar ephemeris - JPL DE Ephemeris
6 DE_fname_header: header.430_229
7 DE_fname_data: ascp1950.430
8

9 # Ocean tide model file
10 ocean_tides_model_file: fes2004_Cnm -Snm.dat
11 # FES2004 ocean tide model
12

13 # Leap second filename
14 leapsec_filename: leap.second
15

16 # Satellite metadata SINEX
17 satsinex_filename: igs_metadata_2063.snx

Listing 4.12: yaml example for general input files

4.9 Output options

Option Values Comments

sp3_velocity true or false if you wish to write out
the velocities for com-
parison

partials_velocity true or false if you wish to write veloc-
ity vector partials to the
output file

Table 4.12: POD YAML: Output options

1 # Write to sp3 orbit format: Option for write Satellite Velocity vector
2 sp3_velocity: false # Write Velocity vector to sp3 orbit
3

4 #--
5 # Write partials of the velocity vector w.r.t. parameters into the

orbits_partials output file:
6 partials_velocity: false # Write out velocity vector partials wrt orbital

state vector elements

Listing 4.13: yaml example for output file optionss

Using the toolkit 17

4.10 Variational Equation Options

Option Values Comments

veq_integration true or false pod mode overides it
anyway. Ignore.

ITRF true or false reference_frame

ICRF true or false one must be true

kepler true or false

Table 4.13: POD YAML: VEQ ref system

1 # Variational Equations
2 veq_integration: false
3

4 #--
5 # Reference System for Variational Equations' - Partials & Parameter

Estimation
6 veq_refsys:
7 itrs: true # ITRS: Terrestrial Reference System
8 icrs: false # ICRS: Celestial Reference System
9 kepler: false

Listing 4.14: yaml example for variational equation options

4.11 General Options

Option Values Comments

estimator_iterations int integrate this number of
times, using the gen-
erated initial conditions
from the previous run as
a start point

Table 4.14: POD YAML: general options

1 # Parameter Estimation
2 estimator_iterations: 2

Listing 4.15: yaml example for output file options

18 Using the toolkit

Option Values Comments

no_model true or false point source only

cannon_ball_model true or false see ??

simple_boxwing_model true or false as stated

full_boxwing_model true or false as stated

Table 4.15: POD YAML: Apriori SRP model

4.12 Apriori solar radiation models
1 srp_apriori_model:
2 no_model: false
3 cannon_ball_model: true
4 simple_boxwing_model: false
5 full_boxwing_model: false

Listing 4.16: yaml example for apriori srp model options

4.12.1 Estimated Solar radiation models

Option Values Comments

ECOM1 true or false ECOM1 params only

ECOM2 true or false ECOM2 params only

hybrid true or false any mix of ECOM1 and
ECOM2

SBOXW true or false Simple box wing model

EMPirical models true or false Empirical is indepen-
dent of the other four

Table 4.16: POD YAML: Estimated SRP models

1 srp_apriori_model:
2 no_model: false
3 cannon_ball_model: true
4 simple_boxwing_model: false

Using the toolkit 19

5 full_boxwing_model: false

Listing 4.17: yaml example for apriori srp model options

4.12.2 gravity_model
Type of gravity model to apply, only one option can be true.

Option Values Comments

central_force true or false

static_gravity_model true or false

time_variable_model true or false

iers_geopotential_model true or false

Table 4.17: POD YAML: Gravity Models

1 gravity_model:
2 central_force: false # Central force gravity field

: gravity_model = 0
3 static_gravity_model: false # Static global gravity field model

: gravity_model = 1
4 time_variable_model: true # Time-variable global gravity field

model : gravity_model = 2
5 iers_geopotential_model: false # IERS conventional geopotential model

: gravity_model = 3

Listing 4.18: yaml example for gravitational force model options

4.12.3 stochastic pulse (pulse)
Do not mix pulses in R/T/N (terrestrial) with pulses in (X/X/Z)

1 pulse:
2 enabled: false
3 epoch_number: 1 # number of epochs to apply pulses
4 offset: 43200 # since the start of day
5 interval: 43200 # repeat every N seconds
6 directions:
7 x_direction: true
8 y_direction: true
9 z_direction: true

10 r_direction: false
11 t_direction: false
12 n_direction: false
13 reference_frame:
14 icrf: true
15 orbital: false

Listing 4.19: yaml example for gravitational force model options

20 Using the toolkit

Option Values Comments

enabled true or false then if true:

epoch_number int number of epochs to ap-
ply pulses each day

offset int seconds until the first
pulse of the day

interval int seconds between each
pulse (after the first)

directions

x_direction true or false

y_direction true or false

z_direction true or false

r_direction true or false

t_direction true or false

n_direction true or false

Table 4.18: POD YAML:stochastic pulse options

Using the toolkit 21

4.13 Inclusions/Exclusions
The pod can be configured to only do certain constellations, and to include or exclude
selected PRNs. For constellations just have true or false after each.
Inclusions/exclusions use the same format, and limit to (or exclude) the stated PRNs in
the given list

1 # optional limiting to constellations
2 #--
3 constellations:
4 GPS: false
5 GALILEO: false
6 GLONASS: true
7 BEIDOU: false
8 QZSS: false

Listing 4.20: yaml example for constellation limiting

1 # optional limiting to PRNs
2 #--
3 prn_inclusions (or prn_exlusions):
4 - G01
5 - E01
6 - G23
7 - R22

Listing 4.21: yaml example for prn inclusions/exclusions

4.14 EQM/VEQ options
You can set different parameters for EQM and VEQ, but the sections labels are the same.

4.14.1 Integration Step

Option Values Comments

RK4_integrator_method true or false Do not use RK4 for veq
as it is not implemented

RKN7_integrator_method true or false only one can be true

RK8_integrator_method true or false

integrator_step int step size in seconds

Table 4.19: POD YAML: Integration Step models

22 Using the toolkit

1 # Numerical integration method
2 # Runge-Kutta-Nystrom 7th order RKN7(6): RKN7, Runge-Kutta 4th order: RK4,

Runge-Kutta 8th order RK8(7)13: RK8
3 integration_options:
4 RK4_integrator_method: false
5 RKN7_integrator_method: true
6 RK8_integrator_method: false
7 integrator_step: 900 # Integrator stepsize in seconds

Listing 4.22: yaml example for integration options

4.14.2 Gravity Field

Option Values Comments

enabled true or false and if true:

gravity_degree_max maximum model terms
in spherical harmonic
expansion

timevar_degree_max maximum time variable
model terms in spherical
harmonic expansion

Table 4.20: POD YAML: Gravity Models

1 # Gravitational Forces
2 gravity_field:
3 enabled: true
4 gravity_degree_max: 15 # Gravity model maximum degree/order (d/

o)
5 timevar_degree_max: 15 # Time-variable coefficients maximum d/o

Listing 4.23: yaml example for gravitational force model options

4.14.3 planetary_perturbations:

Option Values Comments

enabled true or false Uses the emphemeris

Table 4.21: POD YAML: planetary perturbations

1 # Planetary Gravitational Forces
2 planetary_perturbations:
3 enabled: true

Listing 4.24: yaml example for planetary pertubations

Using the toolkit 23

4.14.4 tidal_effects:

Option Values Comments

solid_tides_nonfreq True or False frequency independent
Solid Earth Tides

solid_tides_freq True or False frequency dependent
Solid Earth Tides

ocean_tides True or False uses the ocean tides file

solid_earth_pole_tides True or False tide induced earth spin
rotation not about the
centre of the ellipsoid

ocean_pole_tide True or False ocean response to the
above

ocean_tides_degree_max True or False maximum model term in
spherical harmonic ex-
pansion

Table 4.22: POD YAML: tidal effects

1 tidal_effects:
2 enabled: true
3 solid_tides_nonfreq: true # Solid Earth Tides frequency -independent

terms
4 solid_tides_freq: true # Solid Earth Tides frequency -dependent

terms
5 ocean_tides: true # Ocean Tides
6 solid_earth_pole_tides: true # Solid Earth Pole Tide
7 ocean_pole_tide: true # Ocean Pole Tide
8 ocean_tides_degree_max: 15 # Ocean Tides model maximum degree/order

Listing 4.25: yaml example for tidal effects

24 Using the toolkit

4.15 relativistic_effects:

Option Values Comments

enabled true or false Lens Thinning,
SchwarzChild and
deSitter effects, there
are no means to sep-
arate these effects
currently. The Lens
Thirring effect is calcu-
lated but subsequently
ignored in the POD.

Table 4.23: POD YAML:relativistic_effects

Using the toolkit 25

4.16 non_gravitational_effects:
4.16.1 Models to be applied:

Option Values Comments

solar_radiation true or false radiation push from the
sun

earth_radiation true or false radiation push from the
earth

antenna_thrust true or false reverse thrust from an-
tenna radiation

Table 4.24: POD YAML: non gravitational effects

1 # Non-gravitational Effects
2 non_gravitational_effects:
3 enabled: true
4 solar_radiation: true
5 earth_radiation: true
6 antenna_thrust: true

Listing 4.26: yaml example for non gravitational effects

26 Using the toolkit

4.16.2 Empirical parameters

Option Values Comments

ecom_d_bias true or false

ecom_y_bias true or false

ecom_b_bias true or false

ecom_d_cpr true or false (only ECOM1hybrid)

ecom_y_cpr true or false (only ECOM1hybrid)

ecom_b_cpr true or false

ecom_d_2_cpr true or false (only ECOM2hybrid)

ecom_d_4_cpr true or false (only ECOM2hybrid)

emp_r_bias true or false

emp_t_bias true or false

emp_n_bias true or false

emp_r_cpr true or false

emp_t_cpr true or false

emp_n_cpr true or false

cpr_count int empirical cpr count

Table 4.25: POD YAML: Configuration options for solar radiation pressure models

1 # Non-gravitational Effects
2 srp_parameters:
3 ECOM_D_bias: true
4 ECOM_Y_bias: true
5 ECOM_B_bias: true

Using the toolkit 27

6 EMP_R_bias: true
7 EMP_T_bias: true
8 EMP_N_bias: true
9 ECOM_D_cpr: true

10 ECOM_Y_cpr: true
11 ECOM_B_cpr: true
12 ECOM_D_2_cpr: false
13 ECOM_D_4_cpr: false
14 EMP_R_cpr: true
15 EMP_T_cpr: true
16 EMP_N_cpr: true
17 cpr_count: 1

Listing 4.27: yaml example for srp parameters

NB EQM and VEQ srp parameters MUST be identical. May move into pod_options in
future. overrides are not implemented yet. Ignore for now. We imagine overrides at the
system, block (sat type) and individual satellite level

4.17 overides*
*This section has not yet been implemented in the POD, and is a placeholder for
future versions.
In this section put any system, block or PRN overrides that are different to the ones
chosen before

1 overrides:
2 system:
3 GPS:
4 srp_apriori_model:
5 no_model: false
6 cannon_ball_model: true
7 simple_boxwing_model: false
8 full_boxwing_model: false
9 GAL:

10 srp_apriori_model:
11 no_model: false
12 cannon_ball_model: false
13 simple_boxwing_model: false
14 full_boxwing_model: true
15 GLO:
16 srp_apriori_model:
17 no_model: false
18 cannon_ball_model: false
19 simple_boxwing_model: true
20 full_boxwing_model: false
21 BDS:
22 srp_apriori_model:
23 no_model: false
24 cannon_ball_model: false
25 simple_boxwing_model: true
26 full_boxwing_model: false
27 block:
28 GPS-IIF:
29 srp_apriori_model:
30 no_model: false
31 cannon_ball_model: false

28 Using the toolkit

32 simple_boxwing_model: true
33 full_boxwing_model: false
34 # GPS BLK IIF use ECOM2 parameters
35 srp_parameters:
36 ECOM_D_bias: true
37 ECOM_Y_bias: true
38 ECOM_B_bias: true
39 ECOM_D_2_cpr: false
40 ECOM_D_4_cpr: false
41 ECOM_B_cpr: true
42 prn:
43 G01:
44 srp_apriori_model:
45 no_model: false
46 cannon_ball_model: false
47 simple_boxwing_model: false
48 full_boxwing_model: true
49

50

51

Listing 4.28: yaml example for override

Using the toolkit 29

30 Using the toolkit

5 Overview of the PEA
The software execution of the Parameter Estimation Algorithm (PEA), written in C++, will
be largely sequential - using threads sparingly to limit the overhead of collision
avoidance. Where possible tasks will be completed in parallel using parallelisation
libraries to take advantage of all cpu cores in multi-processor systems while still retaining
a linear flow through the execution.

Sections of the software that create and modify global objects, such as while reading
ephemeris data, will be executed on a single core only. This will ensure that collisions
are avoided and the debugging of these functions is deterministic.

For sections of the software that have clear delineation between objects, such as
per-receiver calculations, these may be completed in parallel, provided they do not
attempt to modify or create objects with more global scope. When globally accessible
objects need to be created for individual receivers, they should be pre-initialised before
the entry to parallel execution section.

5.1 Data Input and Synchronisation
Before the processing of data from an epoch is initiated, all other relevant data is
accumulated. As this code affects global objects that have effects in multiple places, this
code is run in a single thread until data processing is ready to begin.

5.1.1 Config
Configurations are defined in YAML files. At the beginning of each epoch the timestamp
of the configuration file is read, and if there has been a modification, new parameters in
the configuration will be loaded into memory.

5.1.2 Product Input
Various external products may be required for operation of the software, as defined in
the configuration file. At the beginning of each epoch, if any product input files have
been added to the config, or if the inputs are detected to have been modified, they will be
re-read into memory.

5.1.3 Metadata Input
Metadata such as GNSS ephemerides are available from external sources to augment
the capability of the software. This data is ingested at the beginning of each epoch
before processing begins.

5.1.4 Observation Data Input
Observation data forms the basis for operation of the software. Observations from
various sources are synchronised and collated at the beginning of each epoch before
processing begins. The software uses class inheritance and polymorphism such that all
data type inputs are retrieved using a single common instruction, with backend functions
performing any retrieval and parsing required.

Observation data is synchronised by timestamp - when the main function requests data
of a specific timestamp all data until that point is parsed (but may be discarded), before
the observation data corresponding to that timestamp being used in processing.

Using the toolkit 31

5.1.5 Initialisation of Objects
During the following stages of processing many receiver-specific objects may be created
within global objects. To prevent thread collision in the global objects, the
receiver-specific objects are created here sequentially.

5.2 Preprocessor
The preprocessor is run on input data to detect the anomalies and other metrics that are
available before complete processing of the data is performed. This enables low-latency
reporting of issues, and prepares data for more efficient processing in the later stages of
operation.

• Cycle Slip Detection

• Low Latency Anomaly Detection

• Missing Data

• Output / Reporting

5.3 Precise Point Positioning
The largest component of the software, the PPP module ingests all of the data available,
and applies scientific models to estimate and predict current and future parameters of
interest.

Version 1 of the GINAN toolkit satisfies many of the requirements for GNSS modelling,
but has been achieved by incrementally adding features as they became available and
as scientific models have been developed. Many of the components make assumptions
about the outputs of previous computations performed in the software, and require care
before adding or making changes to the code, or even setting configuration options.

It is intended that the software will be reorganised with the benefit of hindsight, to remove
interactions between modules and explicitly execute each processing step in a manner
similar to an algebraic formulation used by experts in the field.

It is tempting for researchers to apply heuristics or corrections that may have been
historically used to assist in computation, but these must be limited to effects that can be
modelled and applied through the Kalman filter, in order to maintain the efficiency and
robustness that it provides.

As the models required for ‘user’, ‘network’, and even ‘ionosphere’ modes are
equivalent, the only distinction between the modes is the extent of modelling to be
applied, which can be reduced to a simple configuration change. As such the parallel
streams within the software will be eliminated and reduced to a single unified model, with
example configurations for common use-cases.

5.3.1 Force and Dynamic Models
At the beginning of processing of an epoch, parameters with time-dependent models are
updated to reflect the time increment since the previous epoch. Simple models will be
well defined when initialised, but more complex models will require updating at every
epoch.

32 Using the toolkit

Ultimate positioning performance largely depends on accurate dynamic models, with
development of these models improving predictive capability, and reducing uncertainty
and adjustments at every point in time.

• Gravity

• Solar Radiation Pressure

• Other

5.3.2 Orbit and State Prediction
Before the available observations for an epoch are utilised, a prediction is made of the
parameters of interest by utilising the previous estimates and applying dynamic models
through the Kalman filter’s state transition.

5.3.3 Phenomena Modelling + Estimation
In order to accurately estimate and predict parameters of interest, all phenomena that
affect GNSS/SLR observations must be isolated and modelled, as being components
comprising the available measurements.

Where the values of parameters are well known they may be used directly to extract
other parameters of interest from the data - such as using published corrections to
precisely determine a user’s position.

When data is unavailable, or when it is desired to compute these products for subsequent
publication and use, estimates of the values are derived from the available data.

It is the sophistication of the models available and applied that determines the ultimate
performance of the software.

The software will be developed to allow for all applicable phenomena to be modelled,
estimated, such that user’s desired constraints may be applied and parameters of
interest extracted.

5.3.4 Initialisation of Parameters
Estimation parameters are initialised on the point of first use, automatically by the
Kalman filter module. Their initial value may be selected to be user-defined, extracted
from a model or input file, or established using a least-squares estimation.

5.3.5 Robust Kalman Filter
It is well known that the Kalman filter is the optimal technique for estimating parameters
of interest from sets of noisy data - provided the model is appropriate.

In addition, statistical techniques may be used to detect defects in models or the
parameters used to characterise the data, providing opportunities to intervene and make
corrections to the model according to the nature of the anomaly.

By incorporating these features into a single generic module, the robustness that was
previously available only under certain circumstances may now be automatically applied
to all systems to which it is applied. These benefits extend automatically to all related
modules (such as RTS), and often perform better than modules designed specifically to
address isolated issues.

For further details about the software’s robust Kalman filter see the Ginan Science
Manual.

Using the toolkit 33

5.3.6 RTS Smoothing
The intermediate outputs of a Kalman filter are of use for other algorithms such as RTS
smoothers. All intermediate values required for such algorithms are to be recorded in a
consistent manner, suitable for later processing.

For further details about the software’s RTS smoothing algorithm see the Ginan Science
Manual.

5.3.7 Integer Ambiguity Resolution
GNSS phase measurements allow for very precise measurements of biases but require
extra processing steps to disambiguate between cycles. Techniques have been
demonstrated that perform acceptably under certain conditions and measurement types,
but require substantial bookkeeping and may not easily transfer to different
measurement applications.

For further details about the software’s ambiguity resolution algorithms see the Ginan
Science Manual.

5.3.8 Product calculation
In order for estimated and predicted values to be of use to end-users, they must be
prepared and distributed in an appropriate format.

Some parameters of interest are not directly estimated by the filter, but may be derived
from estimates by secondary operations, which are performed in this section of the code.

In this section, data is written to files or pushed to NTRIP casters and other data sinks.

5.4 Post-processing
5.4.1 Smoothing
The RTS Smoothing algorithm is capable of using intermediate states, covariances, and
state transition matrices stored during the Kalman filter stage to calculate reverse
smoothed estimates of parameters.

The intermediate data is stored in binary files with messages that contain tail blocks
containing the length of the message. This allows for the file to be efficiently traversed in
reverse; seeking to the beginning of each message as defined by the tail block.

For further details about the software’s RTS Smoothing algorithm see the Ginan Science
Manual.

5.4.2 Minimum Constraints
The minimum constraints algorithm is capable of aligning a network of stations to a
reference system without introducing any bias to the positions of the stations.

A subset of stations positions are selected and weighted to create pseudo-observations
to determine the optimal rigid transformation between the coordinates and the reference
frame. The transformation takes the same algebraic form as a Kalman filter stage and is
implemented as such in the software.

For further details about the software’s minimum constraints algorithm see the Ginan
Science Manual.

34 Using the toolkit

5.4.3 Unit Testing
The nature of GNSS processing means that well-defined unit tests are difficult to write
from first-principles. The software however, is capable of comparing results between
runs to determine if the results have changed unexpectedly.

Intermediate variables are tagged throughout the code, and auxiliary files specify which
variables should be tested as they are obtained, and the expected values from previous
runs.

5.4.4 Logging
Details of processing are logged to trace files according to the processing mode in use.

Per-station files are created with intermediate processing values and information, while a
single summary file is generated for the unified filter and combined processing.

Information produced during processing is output to the console, and may also be
redirected to other logging sinks such as a database, or json formatted output.

In addition to processing information, inputs may be recorded to file for replaying later.

Using the toolkit 35

36 Using the toolkit

6 Using PEA in network mode
PEA is designed to estimate the GNSS error parameters that cannot be precisely
determined. The PEA will estimate the following parameters:

• Correction to satellite initial conditions estimated by the POD component

• Satellite clock offset and drift

• Satellite hardware bias for two signal carriers

• Satellite differential bias for two signal pseudoranges

• Ionospheric propagation delay

• Tropospheric propagation delay

• Receiver/station position and velocity

• Receiver/station clock offset and drift

• Receiver/station hardware bias for signal carriers

• Receiver/station differential bias for two signal pseudoranges

• Relative carrier phase ambiguities

In order to estimate the full range of parameters, the PEA will need to ingest GNSS
observation data from a Global network of sufficient density. Receiver position, clock and
Tropospheric delays can also be estimated from a single receiver and thus will be
addressed on chapter 7.
As is the case for the POD, the PEA uses YAML formatted configuration files to set the
processing options, and is run using the command:

1 ./pea --config <path_to_config_file >

Details on the configuration parameters included in YAML files can be found in chapter 9.

With one exception (Ionosphere delay modelling using smoothed pseudorange),
processing of network data is activated by setting the processing_options :
process_modes : network to true. Configuration files corresponding to the examples in
this section can be found in the ginan/examples directory. A few of these examples are
explained bellow.

6.1 Processing a Global Network to Adjust Satellite
Positions

PEA is designed to use integrated/predicted satellite positions for its real-time network
processing mode, thus all satellite position corrections can only be made in post process
mode. A basic example for PEA network processing is provided in
ex17_pea_pp_netw_gnss_ar.yaml.

Using the toolkit 37

In order to activate estimation of satellite position corrections the entry
/textitdefault_filter_parameters : satellites : orb : estimated needs to be set to true.

It will also require an ICF file, generated by POD in orbit fitting mode, as input. The path
to such file should be given in input_files : orbfiles entry.

ANTEX files, with antenna information for both stations and satellites should be provided
in input_files : atxfiles

SINEX files, with station antennas should be provided in input_files : snxfiles

RINEX 3.XX navigation files, with broadcast clocks should be provided in input_files :
navfiles

BLQ formatted ocean tide loading parameters for each station should be provided in
input_files : blqfiles if available to correct for OTL, otherwise processing_options :
tide_otl should be set to false.

RINEX 3.XX observation files for the network stations should be provided in station_data
: rnxfiles (* can be used as a wildcard).
The main output of this processing mode would be an ICF formatted file containing the
corrected initial conditions for each of the processed satellites. The file will be created in
the same path as the input ICF file with the _pea suffix attached. This file can be used by
the POD to integrate/predict the satellite positions over the required time window.

Receiver/station positions can also be estimated as part of the network processing. In
order to estimate station positions, the parameter default_filter_parameters : stations :
pos : estimated and output_files : output_sinex need to be set to true A SINEX formatted
file with the estimated station position will be generated in the path specified as
root_output_directory.

6.2 Post process estimation of Satellite clocks and
biases

The example configuration file ex17_pea_pp_netw_gnss_ar.yaml corresponds to a
post-mission network processing mode for GPS satellite clocks.

The required input files are similar to the satellite position estimation example. The main
difference will be that SP3 formatted files can be used as input for satellite position (POD
generated ICF files can also be used).

The frequency in which the GNSS error parameters, including satellite and receiver
clocks, are estimated should be set by the parameter processing_options :
epoch_interval.

In order to output the estimated clocks, the parameter output_files : output_clocks needs
to be set to true.

The satellite and receiver will then be output to a RINEX clock formatted file specified in
output_files : clock_filename.
In order to estimate the satellite and receiver hardware biases, the ambiguities need to
be separated from the biases and resolved to integer values.

38 Using the toolkit

In order to perform ambiguity resolution, the proper parameters needs to be set on the
ambiguity_resolution_options fields.

The target constellations need to be selected by setting GPS_amb_resol and/or
GAL_amb_resol to true (only GPS and GAL constellation are supported in the current
version).

Both WL_mode and NL_mode needs to be set to something different than off.

It is advised that round or iter_rnd be used for network processing.

In order to output the estimated biases the parameter output_files : output_biasSINEX
needs to be to true and ambiguity_resolution_options : bias_output_rate set to a number
(of seconds) different than zero. The satellite biases will then be output to a bias SINEX
formatted file specified in output_files : biasSINEX_filename.

Receiver biases are also estimated by the process, however they are not reflected on
the output files.

6.3 Real-time estimation of Satellite clocks and biases
An example of using PEA for real-time estimation of GPS satellite clocks is provided in
ex17_pea_rt_netw_gnss_ar.yaml.

The configuration file is similar to that used for post-mission processing. The main
difference is that the input data specified in the station_data field will correspond to
RTCM formatted streams instead of files.

Currently the PEA can only get real-time data by connecting to an NTRIP caster. The
host name, user name and password corresponding to the NTRIP should be specified
under station_data : stream_root using the format http(s)://user:password@hostname/.

The mountpoint corresponding to station observables need to be listed under
station_data : obs_streams.

Ephemeris streams (broadcast ephemeris and SSR corrections) should be listed under
station_data : nav_streams.

Alternatively the mountpoints can be specified using the full path
http(s)://user:password@hostname/mountpoint, leaving the station_data : stream_root
field empty, this allows to use streams from multiple NTRIP casters.

Satellite positions needs to be provided using (predicted) SP3 files or using real-time
streams (broadcast + SSR corrections).
In the processing_options field, the ppp_ephemeris parameter needs to be set to precise
is using SP3 files and ssr_apc or ssr_com if using SSR correction streams.

In the same field, the epoch_interval is used to set the update interval of the network
solutions, and the wait_next_epoch and wait_all_stations to help synchronise station
streams.

The PEA will wait for wait_next_epoch seconds from the start of the previous epoch for
the first observation to arrive (and skip the current epoch if no observations arrive).

The PEA will wait for wait_all_stations seconds from the first observation for data from
other stations before processing.

Using the toolkit 39

The estimated clock and bias can be output to an NTRIP caster (as well as to local files).

The output NTRIP caster streams need to be specified using the output_streams field.
The host name, user name and password can be set in the output_streams :
stream_root parameter. The names for the output streams should be listed under
output_streams : stream_label Once the label is created, the mountpoint and RTCM
messages to encode can be specified in the output_streams : label field.

Currently the PEA supports output for GPS and Galileo orbits and clock messages (1060
and 1243), code bias (1059 and 1243) and phase bias (1265 and 1267).

6.4 Post process estimation of atmospheric delays
The PEA is capable of estimation both Tropospheric and Ionospheric delays on GNSS
signals. Tropospheric delays can be estimated both in network (processing_options :
process_modes : network = true) and end-user (processing_options : process_modes :
user = true) modes. (End-user mode and will be addressed in the next chapter)

Ionosphere delay estimation and mapping is activated by setting processing_options :
process_modes : ionosphere to true.

Two types of Ionosphere delay estimates are supported by PEA. If all other parameters
in the processing_options : process_modes field are set to false then the Ionospheric
delay are estimated based on carrier smoothed pseudoranges. If in addition to
processing_options : process_modes : ionosphere, processing_options :
process_modes : network is set to true, the PEA will attempt to calculate Ionospheric
delay measurements from ambiguity resolved carrier phase measurements. For this
mode to work, the parameters in the ambiguity_resolution_options field needs to be set
properly. Ionospheric delay estimate are available for GPS signals only.
The Ionosphere slant delay measurements delay measurements can be outputted into
STEC files if output_files : output_ionstec parameter is set to true (the output file name
can be set using ionstec_filename).

The format of STEC files have one of two forms. If the vector in
ionosphere_filter_parameters : layer_heights is not empty, each line on the STEC file will
contain the slant delay measurements and the piercing points at each layer height:

1 #IONO_MEA , 2102,171000.000, AGGO, G05, -1.6030, 1.9699e-04, 2, 1, 350,
-33.662, -61.955, 1.443

the fields representing, from left to right:

1. ”IONO_MEA” label

2. GPS week

3. GPS TOW in seconds

4. Receiver/station name

5. Satellite ID

6. Slant delay in meters

40 Using the toolkit

7. Slant delay variance in meters2

8. Number of Ionosphere layers N

9. N fields containing:

(a) Height of layer in Km

(b) Latitude of piercing point (in degrees)

(c) Longitude of piercing point (in degrees)

(d) Slant to vertical mapping function

If the layer heights field is empty the ”Number of Ionosphere layers” field will be 0 and
followed by the receiver position in ECEF, and the satellite position in ECEF.
Vertical TEC (VTEC) maps can be estimated from the slant delay measurements and
output as IONEX formatted maps (output_files : output_ionex = true) and its
corresponding DCB (output_files : output_biasSINEX = true).

Ionosphere mapping and output are controlled by parameters in the
ionosphere_filter_parameters field. Currently only spherical harmonics based mapping is
supported by the PEA model = spherical_harmonic, setting
ionosphere_filter_parameters : model to meas_out will output the ionosphere
measurements but will not perform mapping.

If spherical harmonics is selected as mapping method, the ionospheric delays will be
mapped into multiple thin layer shells. The height of the shells can be set in the
ionosphere_filter_parameters : layer_heights vector.

The VTEC at each layer will be fit to spherical harmonic components, with a maximum
order and degree of ionosphere_filter_parameters : func_order. If output_files :
output_ionex is set to true the Ionosphere map will be outputted in IONEX 1.11 format.

The area of the IONEX map can be set using the lat_center, lon_center, lat_width,
lon_width parameters. The horizontal resolution of the IONEX map can be set using the
lat_res, lon_res parameters. The temporal resolution of the IONEX file is defined by the
time_res parameter.

A configuration file, ex16_pea_pp_ionosphere.yaml can be used to generate a single
layer IONEX map and accompanying biasSINEX file from smoothed pseudorange
observations.

Using the toolkit 41

42 Using the toolkit

7 Using PEA in user mode
When set to end user mode, the PEA component of Ginan will process each station
separately. This mode will allow the estimation of parameters available to users with
single receivers.

• Receiver position

• Receiver clock offset

• Tropospheric delay at receiver location

• Ionospheric delay at the receiver location (not yet available)

• Carrier phase ambiguities

In order to use the PEA in end-user mode, the processing_options : process_modes :
user parameter needs to be set to true.

The results of PEA run in end user mode are printed in the trace files. Trace file outputs
can be activated by setting the output_files : output_trace parameter to true. The most
commonly used outputs from the PEA used in end-user mode are expected to be: the
receiver position, receiver velocity, receiver clocks and tropospheric delays.

7.1 Receiver position
Receiver position results are preceded by the ”$POS” label and thus, in Linux, can be
extracted using the command:

1 grep "$POS" <path_to_trace_file >

the output line for the for receiver position will have 10 comma separated fields with the
following format:

1 $POS, 2166, 278015.000, 6, -4052053.0060, 4212836.8682, -2545105.0796,
0.0245227, 0.0231919, 0.0163678

the fields represent, from left to right:

1. ”$POS” label

2. GPS week

3. GPS TOW in seconds

4. Solution type (6 for float PPP, 1 for ambiguity fixed PPP)

5. Receiver ECEF X position in meters

6. Receiver ECEF Y position in meters

7. Receiver ECEF Z position in meters

Using the toolkit 43

8. Standard deviation of ECEF X positions in meters

9. Standard deviation of ECEF X positions in meters

10. Standard deviation of ECEF X positions in meters

7.2 Receiver clock
Receiver clock offset results are preceded by the ”$CLK” label and thus, in Linux, can be
extracted using the command:

1 grep "$CLK" <path_to_trace_file >

the output line for the for receiver position will have 13 comma separated fields with the
following format:

1 $CLK, 2166, 278015.000, 6, 14, 3.1902, 0.0000, 1.1924, 0.0000, 0.0860,
0.0000, 0.0953, 0.0000

the fields represent, from left to right:

1. ”$CLK” label

2. GPS week

3. GPS TOW in seconds

4. Solution type (6 for float PPP, 1 for ambiguity fixed PPP)

5. Number of satellites used in the solution

6. Receiver clock offset for with respect to GPS clock, in nanoseconds

7. Receiver clock offset for with respect to GLONASS clock, in nanoseconds

8. Receiver clock offset for with respect to Galileo clock, in nanoseconds

9. Receiver clock offset for with respect to Beidou clock, in nanoseconds

10. Standard deviation of clock offset wrt. GPS, in nanoseconds

11. Standard deviation of clock offset wrt. GLONASS, in nanoseconds

12. Standard deviation of clock offset wrt. Galileo, in nanoseconds

13. Standard deviation of clock offset wrt. Beidou, in nanoseconds

If clock offsets for a particular constellation are not available both the offset and its
variance will be set to 0.

7.3 Tropospheric delays
Tropospheric delays at the receiver position are preceded by the ”$TROP” label and
thus, in Linux, can be extracted using the command:

44 Using the toolkit

1 grep "$TROP" <path_to_trace_file >

the tropospheric delay solutions will be represented to either a single line, with the
”$TROP” or three lines, as follows:

1 $TROP, 2166, 278015.000, 6, 14 ,2.294950, 0.0030977
2 $TROP_N, 2166, 278015.000, 6, 14, -0.174797, 0.0181385
3 $TROP_E, 2166, 278015.000, 6, 14, -0.223868, 0.0250276

each of the troposphere output line will contain 7 comma separated field, of which the
first five are:

1. Label, ”$TROP”, ”$TROP_N” or ”$TROP_E”

2. GPS week

3. GPS TOW in seconds

4. Solution type (6 for float PPP, 1 for ambiguity fixed PPP)

5. Number of satellites used in the solution

The line starting with ”$TROP” contain the Zenith Tropospheric Delay (ZTD) and its
standards deviation, both in meters, as their last two fields. The line starting with
”$TROP_N” contains the tropospheric delay gradient in north-south direction, and the line
starting with ”$TROP_E” contains the tropospheric delay gradient in east-west direction.

Configuration files for specific examples have been added to the examples folder in the
repository. Examples corresponding to end user processing are explained bellow. In
order to

7.4 Dual frequency PPP with floating ambiguities
As the end-user processing mode cannot calculate satellite states, the satellite position
and clock offset needs to be provided externally.

The PEA supports SP3 formatted satellite position inputs, specified in input_files :
sp3files, and RINEX clock files, input_files : clkiles, as satellite clock inputs.

ANTEX files, with antenna information for both stations and satellites should be provided
in input_files : atxfiles

SINEX files, with station antennas should be provided in input_files : snxfiles

RINEX 3.XX navigation files, with broadcast clocks should be provided in input_files :
navfiles

BLQ formatted ocean tide loading parameters for each station should be provided in
input_files : blqfiles if available to correct for OTL, otherwise processing_options :
tide_otl should be set to false.

RINEX 3.XX observation files for the network stations should be provided in station_data
: rnxfiles

Using the toolkit 45

The configuration files named examples/ex11_pea_pp_user_gps.yaml and
examples/ex12_pea_pp_user_gnss.yaml set the PEA to calculate a post-process end
user solution for a static receiver.

The constellations to be used in processing can be specified in the processing_options :
process_sys field.

The tracking of a moving receiver can be done by setting the default_filter_parameters :
stations : pos : proc_noise parameter to the maximum expected velocity.

Receiver velocity can also be estimated by setting default_filter_parameters : stations :
pos_rate : estimate to true.

Tropospheric delays are estimated as a combination of hydrostatic and wet components,
each component is in turn estimated as the products of the zenith delay and a mapping
function. If default_filter_parameters : stations : trop : estimate is set to true, the PEA
estimates the zenith wet delay. If default_filter_parameters : stations : trop_grad :
estimate is set to true, the PEA also estimates azimuthal components of tropospheric
mapping functions.

The hydrostatic zenith delays and elevation dependent component of mapping functions
are calculated based on pre-defined models. Available models, which can be selected
using the processing_options : troposphere : model parameter, are the GPT2 and VMF3
models.

If using the GPT2 model the path to the necessary grid file needs to be specified in
processing_options : troposphere : gpt2grid

If using the VMF3 model, the tropospheric parameters corresponding to the observation
times need to be provided in a directory specified by processing_options : troposphere :
vmf3dir, and the orography file for atmospheric circulation models need to be specified in
processing_options : troposphere : orography.

7.5 Single frequency PPP
It is possible to perform end user PPP processing using single frequency data (although
at reduced accuracy) by providing external Ionospheric delay data.

The configuration files named examples/ex13_pea_pp_user_gps_sf.yaml set an
example to process single frequency observations.

The PEA currently uses IONEX formatted VTEC maps as Ionosphere delay data. The
path to the IONEX file needs to be specified in input_files : ionfiles.

In order for the PEA to use the VTEC maps, the processing_options : ionosphere :
corr_mode parameter should to be set to total_electron_content.

If provided separately, files containing the satellite DCB (either RINEX DCB or bias
SINEX) should be specified in input_files :dcbfiles

7.6 Dual frequency PPP with ambiguity resolution
The PEA (in both network and user processing modes) can be specified to perform
ambiguity resolution in an attempt to improve accuracy and convergence times.

46 Using the toolkit

In aside from the requirements for floating PPP ambiguities, information on satellite
hardware biases needs to be provided order to allow correct ambiguity resolution in end
user PEA processing.

For post-process, the PEA use bias SINEX formatted files as input channels for satellite
hardware biases. The bias SINEX file can be specified in input_files :bsxfiles.

The ambiguity resolution process is controlled by the ambiguity_resolution_options field.
Currently ambiguity resolution is only supported for GPS and Galileo satellites.

Ambiguity resolution for GPS satellites can be activated by setting the GPS_amb_resol
parameter to true.

Ambiguity resolution for Galileo satellites can be activated by setting the
GAL_amb_resol parameter to true.

In addition the ambiguity resolution algorithm needs to be specified for both the
wide-lane ambiguity (WL_mode) and narrow-lane ambiguities (NL_mode.

For best results, round or iter_rnd are recommended for Wide-lane ambiguities and
lambda_alt or lambda_bie is recommended for narrow-lane ambiguities.

7.7 Real-time PPP
The PEA can also be used to process GNSS data in real-time. Real-time processing will
make use of RTCM formatted streams for receiver observables and satellite data.

Currently the PEA can only get real-time data by connecting to an NTRIP caster.

An example of such a caster, can be accessed by registering at . The host name, user
name and password corresponding to the NTRIP can shold be specified under
station_data : stream_root using the format http(s)://user:password@hostname/. The
mountpoint corresponding to station observables need to be listed under station_data :
obs_streams.

Ephemeris streams (broadcast ephemeris and SSR corrections) shold be listed under
station_data : nav_streams.

The PEA support MSM4, MSM5, MSM6 and MSM7 messages for observations, and
orbit and clock messages, code bias messages and phase bias messages for GPS and
Galileo.
Real-time outputs are not yet defined for PEA, the processed receiver solution are
printed in real time on the TRACE files.

Using the toolkit 47

https://www.auscors.ga.gov.au/

48 Using the toolkit

8 PEA examples
In this section we go through a number of different ways that the pea can be used to
process GNSS data.

1. Precise Point Positioning (PPP) processing - In this section we will demonstrate
how to processing in PPP mode using the Ionosphere free combination, we will
provide an example on how to use IGS products to obtain a float solution, and then
an example on how to obtain an ambiguity fixed solution. We will also cover how to
process gnss streams in real-time.

2. Obtain an orbit solution from a global tracking network

3. Obtain an orbit and clock solution from a global tracking network

4. How to process a Global solution in real-time

5. How to obtain an ionosphere model

Using the toolkit 49

50 Using the toolkit

9 PEA Configuration File - YAML
The PEA processing engine uses a single YAML file for configuration of all processing
options.

9.1 YAML Syntax
The YAML format allows for heirarchical, self descriptive configurations of parameters,
and has a straightforward syntax.

White-space (indentation) is used to specify heirarchies, with each level typically
indented with 4 space characters.

Colons (:) are used to separate configuration keys from their values.

Lists may be created by either appending multiple values on a single line, wrapped in
square brackets and separated by commas, or, by adding each value on a separate
indented line with a dash before the value.

Adding a hash symbol (#) to a line will render the remainder of the line as a comment to
be ignored by the parser.

Strings with special characters or spaces should be wrapped in quotation marks.

You will see all of these used in the example configuration files, but the files may be
re-ordered, or re-formatted to suit your application.

9.2 Default Values
Many processing options have default values associated with them. To prevent
repetition, and to ensure that the values are reported correctly, these values may be
viewed in the acsConfig.hpp file within the source code directories.

9.3 Globbing
Files may be specified individually, as lists, or by searching available files using a
globbed filename using the star character (*)

9.4 Wildcard Tags
Output filenames can include wildcards wrapped in < > brackets to allow more generic
names to be used. While processing, these tags are replaced with details gathered from
processing, and allows for automatic generation of, for example, hourly output files.

<CONFIG>
This is replaced with the ’config_description’ value entered in the yaml file.

<STATION>
This is replaced with the 4 character station id of each station that generates a trace file.

Using the toolkit 51

<LOGTIME>
This is replaced with the (rounded) time of the epochs within the trace file.

If trace file rotation is configured for 1 hour, the <LOGTIME> wildcard will be rounded down
to the closest hour, and subsequently change value once per hour and generate a
separate output file for each hour of processing.

<DDD>, <D>, <WWWW>, <YYYY>, <YY>, <MM>, <DD>, <HH>
These are replaced with the components of time of the start epoch.

9.5 input_files:
This section of the yaml file specifies the lists of files to be used for general metadata
inputs, and inputs of external product data.

1 # Example
2 input_files:
3

4 root_input_directory: /data/acs/pea/proc/exs/products/
5

6 atxfiles: [igs14_2045_plus.atx]
7 snxfiles: [igs19P2062.snx]
8 blqfiles: [OLOAD_GO.BLQ]
9 navfiles: [brdm1990.19p]

10 orbfiles: [orb_partials/gag20624_orbits_partials_new.out]
11 sp3files: ["*.sp3"]
12 clkfiles: [jpl20624.clk]
13 erpfiles: [igs19P2062.erp]
14 dcbfiles: [CAS0MGXRAP_20191990000_01D_01D_DCB.BSX]
15 bsxfiles: []
16 ionfiles: []

Listing 9.1: A typical input_files section

root_input_directory:
This specifies a root directory to be prepended to all other file paths specified in this
section. For file paths that are absolute, (ie. starting with a /), this parameter is not
applied.

atxfiles:
A list of ANTEX files to be used in processing. These may supply the antenna
parameters to be used by satellites and receivers.

snxfiles:
A list of SINEX files to be used in processing. These may supply the initial positions and
other metadata for receivers.

blqfiles:
A list of BLQ files to be used in processing. These may supply the ocean tide loading
data.

navfiles:
A list of NAV files to be used in processing. These may supply the basic broadcast
ephemerides for satellites.

52 Using the toolkit

orbfiles:
A list of ORB files to be used in processing. These may supply the PEA with orbital and
ratiation pressure data from the Ginan’s POD module, allowing precise orbit data to be
passed between the two pieces of software.

sp3files:
A list of SP3 files to be used in processing. These may supply the ephemerides for
higher precision processing.

clkfiles:
A list of CLK files to be used in processing. These may supply the clock offsets for
satellites and receivers for higher precision processing.

erpfiles:
A list of ERP files to be used in processing. These may supply the earth rotation
parameter information.

dcbfiles:
A list of DCB files to be used in processing. These may supply the differential code
biases to assist with ambiguity resolution.

bsxfiles:
A list of BSINEX files to be used in processing. These may supply biases to assist with
ambiguity resolution.

ionfiles:
A list of ION files to be used in processing. These may supply the ionospheric modelling
parameters for single frequency processing.

9.6 station_data:
This section specifies the sources of observation data to be used in positioning.

There are numerous ways that the pea can access GNSS observations to process. You
can specify individual files to process, set it up so that it will search a particular directory,
or you can use a command line flag --rnx <rnxfilename> to add an additional file to
process. The data should be uncompressed rinex (gunzipped, and not in hatanaka
format), or RTCM3 formatted binary data.

It may consist of RINEX files, or RTCM streams or files, which are specified as follows:

9.6.1 Post processing:
1 # post processing example
2 station_data:
3 root_stations_directory: /data/acs/ginan/examples/data
4 rnxfiles:
5 - "ALIC*.rnx"
6 - "BAKO*.rnx"
7

8 #obs_rtcmfiles:
9 # - "*-OBS.rtcm3"

10

11 #nav_rtcmfiles:
12 # - "*-NAV.rtcm3"

Using the toolkit 53

Listing 9.2: station_data:

root_stations_directory:
This specifies a root directory to be prepended to all other file paths specified in this
section. For file paths that are absolute, (ie. starting with a /), this parameter is not
applied.

rnxfiles:
This is a list of RINEX files to be used for observation data. The first 4 characters of the
filename are used as the receiver ID.

If multiple files are supplied with the same ID, they are all processed in sequence -
according to the epoch times specified within the files. In this case, it is advisible to
correctly specify the start_epoch for the filter, or the first epoch in the first file will likely be
used.

obs_rtcmfiles:
This is a list of RTCM binary files to be used for observation data. The first 4 characters
of the filename are used as the receiver ID.

This can be used to read data that has been saved from a stream for later testing.

nav_rtcmfiles:
This is a list of RTCM binary files to be used for navigation and correction data. No
receiver is to be associated with these files.
9.6.1.1 Real-time processing:
To process data in real-time you will need to set up the location, username annd
password for the caster that you will be obtaining the input data streams from in the
configuration file.

The pea supports obtaining streams from casters that use NTRIP 2.0 over http and https.
1 # realtime streaming example
2 station_data:
3

4 stream_root: "http://<username >:<password >@auscors.ga.gov.au:2101/"
5

6 nav_streams:
7 - BCEP00BKG0
8 - SSRA00CNE0
9

10 obs_streams:
11 - STR100AUS0
12

13 ssr_input_antenna_offset: APC

Listing 9.3: station_data:

As shown in listing: 9.3, the caster url, username and password are specified within
double quotes with the stream_root tag. In this example the streams are being obtained
from the auscors caster run by Geoscience Australia. The broadcast information is being
obtained from the stream BCEP00BKG0 being supplied by BKG, and corrections to the

54 Using the toolkit

utlra-rapid predicted orbit are being obtained from the stream SSRA00CNE0. The
real-time data being processed is for the continuous GNSS station located at Mount
Stromlo obtained from the stream STR100AUS0.

You can test your username and password is working correctly by running the curl
command:

1 curl https://ntrip.data.gnss.ga.gov.au/ALIC00AUS0 -H "Ntrip-Version: NTRIP
/2.0" -i --output - -u <user>

stream_root:
This specifies a root url to be prepended to all other streams specified in this section. If
the streams used have individually specified root urls, usernames, or passwords, this
should not be used.

obs_streams:
This is a list of RTCM streams to read realtime data from. The first 4 characters of the
filename are used as the receiver ID.

In combination with the stream_root parameter, they may require a username,
password, port and mountpoint.

The streams in this section are processed for observations from receivers.

nav_streams:
This is a list of RTCM streams to read real-time data from.

In combination with the stream_root parameter, they may require a username,
password, port and mountpoint.

The streams in this section are processed separately from observations, and will typically
be used for receiving SSR messages or other navigational data from an external service.

ssr_input_antenna_offset:
This setting should match the ephemeris type that is provided in the listed SSR stream,
i.e. satellite antenna-phase-centre (APC) or centre-of-mass (COM). This information is
listed in the NTRIP Caster’s sourcetable - in general, use APC for SSRA* streams, and
COM for SSRC* streams.

9.7 output_files:
This section of the yaml file specifies options to enable outputs and specify file locations.

An example of this section follows:
1 output_files:
2

3 root_output_directory: /data/acs/ginan/examples/<CONFIG >/
4

5 output_trace: true
6 trace_level: 3
7 trace_directory: ./
8 trace_filename: <CONFIG>-<STATION><LOGTIME >.TRACE
9

Using the toolkit 55

10 output_residuals: false
11

12 output_config: true
13

14 output_summary: false
15 summary_directory: ./
16 summary_filename: <CONFIG>-<YYYY><DDD><HH>.SUM
17

18 output_clocks: true
19 clocks_directory: ./
20 clocks_filename: <CONFIG >.clk

Listing 9.4: output_files:

root_output_dir:
This specifies a root directory to be prepended to all other file paths specified in this
section. For file paths that are absolute, (ie. starting with a /), this parameter is not
applied.

[X]_directory:
Directory to output file [X] to, where [X] are the features below. May contain wildcard
tags. May be relative to root_output_dir, or absolute. If the directory does not exist, it will
be created.

• trace_directory

• summary_directory

• clocks_directory

• ionex_directory

• biasSinex_directory

• sinex_directory

• persistance_directory

• rtcm_directory

[X]_filename:
Filename to use for output of [X]. May contain wildcard tags. File will be created or
overwritten if it already exists.

• trace_filename

• summary_filename

• clocks_filename

• ionex_filename

• biasSinex_filename

• sinex_filename

• persistance_filename

• obs_rtcm_filename

56 Using the toolkit

• nav_rtcm_filename

trace_level:
Integer from 0-5 to specify verbosity of trace outputs. (5 - print everything)

trace_rotate_period, trace_rotate_period_units:
Granularity of length of time used for <LOGTIME>tags. These parameters may be used
such that the filename of an output will change intermittently, and thus distribute the
output over multiple files.

The <LOGTIME>tag is updated according to the epoch time, not the current clock time.

trace_rotate_period must be a numeric value, and trace_rotate_period_units may be one
of seconds (default), minutes, hours, days, weeks, years, (with or without plural s).

output_residuals:
Boolean to print the residuals from kalman filter operation to relevant trace files.

output_config:
Boolean to print a copy of the yaml file to the top of each trace file. This may assist with
keeping a record of the parameters used to generate the particular results contained in
the file.

output_trace:
Boolean to generate per-station trace files.

output_summary:
Boolean to generate a network summary file.

output_clocks:
Boolean to generate RINEX formatted clock files from processed data.

output_AR_clocks:
Boolean to specify that the ambiguity resolved version of clocks should be output if
output_clocks is enabled.

output_ionex:
Boolean to generate an IONEX file from processed ionosphere data.

output_ionstec:
Boolean to generate an IONSTEC file from processed ionosphere data.

output_biasSINEX:
Boolean to generate a biasSINEX from processed network data.

output_sinex:
Boolean to generate a sinex file containing processed solutions, and the metadata used
to generate them.

output_persistance:
Boolean to save the network filter state, and navigation and ephemerides structure to
disk once per epoch. For realtime processing where ephemerides are sourced from a a
stream over several minutes, this may enable quicker start-up if the processor is
restarted.

Using the toolkit 57

input_persisance:
Boolean to try to load a saved filter and navigation structure from disk.

output_mongo_measurements:
Boolean to output kalman filter measurements and residuals to a mongo database.

output_mongo_states:
Boolean to output the results of kalman filter processing to a mongo database.

output_mongo_logs:
Boolean to output timestamped log data from the console to a mongo database.

output_mongo_metadata:
Boolean to output timestamped metadata from processing to a mongo database.
(unimplemented)

delete_mongo_history:
Boolean to delete a previous database using the same <CONFIG> tag before
processing, to prevent collisions.

mongo_uri:
The URL to the location of the mongo database server.

9.8 processing_options:
This sections specifies the extent of processing that is performed by the engine.

epoch_interval:
Increment in nominal epoch time for each processing epoch. This parameter may be
used to sub-sample datasets by using an epoch_interval that is a multiple of the
dataset’s internal interval between epochs.

start_epoch
Nominal time of the first epoch to process. Time is formatted as YYYY-MM-DD
HH:MM:SS. This parameter may be left undefined to use the first available data point.

end_epoch
Maximum nominal time of the last epoch to process. This parameter may be left
undefined.

max_epochs:
Maximum epochs to process before completion. This parameter may be left undefined.

process_modes:
1 process_modes:
2 user: true
3 network: false
4 minimum_constraints: false
5 rts: false
6 ionosphere: false

Listing 9.5: process_modes:

58 Using the toolkit

user:
Boolean to process all stations individually. Typically used for determining position of
individual receivers.

network:
Boolean to process all stations in a single filter. May be used for determination of orbits,
clocks, etc.

minimum_constraints:
Boolean to apply a rigid transformation to the results of the network filter after completion.

ionosphere:
Boolean to compute an ionosphere model from observations.

unit_tests:
Boolean to run tests to compare intermediate values during processing to stored results.

process_sys:
1 process_sys:
2 gps: true
3 glo: false
4 gal: false
5 bds: false

Listing 9.6: process_sys:

Booleans to enable the various GNSS satellite systems.

• gps

• glo

• gal

• bds

elevation_mask:
Minimum elevation required for observations to be used, measured in degrees.

ppp_ephemeris:
Option to specify source of satellite ephemeris used in PPP processing. Sources are:

• broadcast

• precise

• precise_com

• sbas

• ssr_apc

• ssr_com

tide_solid:
Boolean to apply solid tide model to station positions.

Using the toolkit 59

tide_otl:
Boolean to apply ocean tide loading model to station positions.

tide_pole:
Boolean to apply pole tide model to station positions.

phase_windup
Boolean to apply phase windup model to satellite phase measurements.

reject_eclipse
Boolean to exclude eclipsed satellites from processing.

raim
Boolean to perform ’Receiver autonomous integrity monitoring’ to detect and exclude
observations that result in SPP failures.

cycle_slip: thres_slip:
Threshold to apply to geometry free phase values to determine if an observation should
be rejected due to a slip.

max_inno:
Maximum innovation in PPP measurement before both phase and code measurements
are excluded.

deweight_factor:
Factor by which measurement variances are increased upon detection of a bad
measurement.

max_gdop:
Maximum ’geometric dilution of precision’ allowed for an SPP result to be valid.

antexacs:
Internal processing option. Bad things will likely happen if this is set to false.

sat_pcv:
Boolean to model satellite phase center variations.

pivot_station:
Station specified as origin for receiver clocks. Clocks for this station will be constrained
to zero. May be set to <AUTO >or undefined to use first available station.

pivot_satellite
: Unused.

wait_next_epoch:
Expected time interval between successive epochs data arriving. For real-time this
should be set equal to epoch_interval.

wait_all_stations:
Window of delay to allow observation data to be received for processing. Processing will
begin at the earliest of:

60 Using the toolkit

• Observations received for all stations

• wait_all_stations has elapsed since any station has received observations

• wait_all_stations has elapsed since wait_next_epoch expired.

code_priorities:
List of observation codes that may be used in processing, and the order of priority for
use. (Currently only a single code is used per frequency)

joseph_stabilisation:
Boolean to apply additional calculations in filter to ensure numerical stability.

9.9 troposphere:
1 troposphere:
2 model: vmf3 #gpt2
3 vmf3dir: grid5/
4 orography: orography_ell_5x5
5 # gpt2grid: EX03/general/gpt_25.grd

Listing 9.7: troposphere:

model:
Unused

vmf3dir:
Location of vmf3 files.

orography:
Orography filename for vmf3 troposphere.

gpt2grid:
Name of gpt2 grid file. Will be used as fallback in case of errors with vmf3.

9.10 ionosphere:
corr_mode:
Ionosphere correction/model mode. May be one of:

• broadcast - broadcast model

• sbas - SBAS model

• iono_free_linear_combo - L1/L2 or L1/L5 iono-free LC

• estimate - estimation

• total_electron_content - IONEX TEC model

• qzs - QZSS broadcast model

• lex - QZSS LEX ionospehre

• stec - SLANT TEC model

Using the toolkit 61

iflc_freqs:
Frequency pairs to be used in ionosphere-free linear combinations. May be one of:

• any

• l1l2_only

• l1l5_only

9.11 unit_test_options:
output_pass:
Boolean to print pass messages in output file when tests pass. This may produce very
long test files for not much benefit if we are just looking for failures.

stop_on_fail:
Boolean to halt processing as soon as an error is located. This may allow testing and
reporting to complete far sooner if there is a failure.

stop_on_done:
Boolean to halt further processing if all required tests have been completed.

output_errors:
Boolean to print debug information about the error to the output file.

absorb_errors:
Boolean to replace incorrect values found in processing with the correct test values and
continue processing as if the test had passed. This may be useful for preventing a single
bad test from causing cascading test failures as the values diverge from the original
result.

directory, filename:
File and directory to store and open test files.

9.12 ionosphere_filter_parameters:
model:
Model to use in ionosphere routines. May be one of:

• meas_out

• bspline

• spherical_caps

• spherical_harmonics

model_noise:
Process noise to be applied to ionosphere kalman filter. (deprecated)

lat_center, lon_center:
Longitude and latitude of center of ionosphere map in degrees.

lat_width, lon_width:
Width of ionosphere maps in degrees.

62 Using the toolkit

lat_res, lon_res:
Resolution of ionosphere maps in degrees.

time_res:
Resolution of ionosphere maps in time.

func_order:
Order of Legendre function used in spherical caps ionosphere.

layer_heights:
List of heights of modelled ionosphere layers.

9.13 output_options:
This section specifies values to be used in the generation of output files.

1 output_options:
2

3 config_description: ex11
4 analysis_agency: GAA
5 analysis_center: Geoscience Australia
6 analysis_program: AUSACS
7 rinex_comment: AUSNETWORK1

Listing 9.8: output_options:

config_description:
The value entered here is used to complete the <CONFIG> wildcard. This may enable a
single change in the yaml file to make changes to many options, including output folders
and filenames.

analysis_agency, analysis_center, analysis_program,
rinex_comment:
String to be written within files during various output files’ generation.

9.14 user_filter_parameters, network_filter_parameters,
ionosphere_filter_parameters:

1 user_filter_parameters:
2

3 max_filter_iterations: 5
4 max_prefit_removals: 3
5

6 rts_lag: -1 #-ve for full reverse, +ve for
limited epochs

7 rts_directory: ./
8 rts_filename: PPP-<CONFIG>-<STATION >.rts
9

10 inverter: LLT #LLT LDLT INV

Listing 9.9: Kalman Filter Configuration

For details on the configuration of kalman filters refer to ??, and ??

Using the toolkit 63

9.15 default_filter_parameters:
1 default_filter_parameters:
2

3 stations:
4

5 error_model: elevation_dependent #uniform
elevation_dependent

6 code_sigmas: [0.15]
7 phase_sigmas: [0.0015]
8

9 pos:
10 estimated: true
11 sigma: [0.1]
12 proc_noise: [0.00057] #0.57 mm/sqrt(s), Gipsy default

value from slow-moving
13 proc_noise_dt: second

Listing 9.10: Default_filter_parameters

error_model:
The GNSS observations can be weighted in three different ways in the PEA:

• uniform - all observations are assigned the same variance

• elevation_dependent - an elevation dependent function is used to scale the
observations, those at higher elevation are given more weight (a smaller standard
deviation) than those observed at lower elevation

• SNR observations (coming soon) - the Carrier to Noise observations supplied by
the receiver are used to determine the observation weight. Generally speaking this
is very similar to elevation weighting, but is useful when use observations obtained
from a non-geodetic grade receiver/antenna.

code_sigmas, phase_sigmas:
Lists of the default sigma values for GNSS measurements, measured in meters.
Separate values may be entered for L1, L2 frequencies if desired, or the last value will
be used for any undefined values in the list.

pos, clk, amb, trop...:
For details on the configuration of estimated elements refer to ??

9.16 minimum_constraints:
For details on the configuration of minimum constraints refer to ??

9.17 ambiguity_resolution_options:
Min_elev_for_AR:
Minimum elevation to perform ambiguity resolution (degrees)

Set_size_for_lambda:
Candidate set size for lambda.

Max_round_iterat:
Maximum number of iterations when performing integer rounding.

64 Using the toolkit

GPS_amb_resol, GLO_amb_resol, GAL_amb_resol,
BDS_amb_resol, QZS_amb_resol:
Booleans to enable the resolution of ambiguities for system X.

WL_mode, NL_mode:
Mode of ambiguity resolution for widelanes and narrowlanes.

May be one of the following:

• off

• round

• iter_rnd

• bootst

• lambda

• lambda_alt

• lambda_alt2

• lambda_bie

WL_succ_rate_thres, NL_succ_rate_thres:
Threshold for success rate test in LAMBDA. Values between 0 and 1 are valid.

WL_sol_ratio_thres, NL_sol_ratio_thres:
Thresholds for ambiguity validation: Ratio is performance of best solution compared to
next best performance set. (greater than 1)

WL_procs_noise_sat, WL_procs_noise_sta:
Process noise applied for stations or satellites in the ambiguity resolution computations.

NL_proc_start:
Time before starting to calculate (and output) NL ambiguities/biases (in seconds)

read_OSB, read_DSB, read_SSR, read_satellite_bias,
read_station_bias, read_GLONASS_IFB:
Booleans to enable reading of bias types from file.

write_OSB, write_DSB, write_SSR_bias, write_satellite_bias,
write_station_bias:
Booleans to enable writing of bias types to file.

Using the toolkit 65

66 Using the toolkit

10 Attribution
Ginan - Analysis Centre Software

A project funded as Part of the Positioning Australia program.

Geoscience Australia

https://www.ga.gov.au/scientific-topics/positioning-navigation/positioning-australia

clientservices@ga.gov.au

Cnr Jerrabomberra Ave and Hindmarsh Drive

Symonston ACT 2609

Australia

Using the toolkit 67

68 Using the toolkit

	Contents
	1 Introduction
	1.1 The Positioning Australia Program
	1.2 Ginan - Analysis Centre Software
	1.3 This document - POD and PEA

	2 Using the POD Module
	2.1 Using the POD for orbit fitting
	2.2 Using the POD for orbit integration/prediction

	3 POD Examples
	3.1 Processing Example 1
	3.2 Processing Example 2 - ECOM2 SRP
	3.3 Example 3 - (examples/ex23_pod_prd_gps.yaml)
	3.4 Example 4 - (examples/ex24_pod_ic_gps.yaml):
	3.5 Example 5 - (examples/ex25_pod_fit_gps.yaml):
	3.6 Example 6 - (examples/ex26_pod_fit_meo.yaml):

	4 YAML Configuration for POD
	4.1 POD processing options (pod_options)
	4.2 Time scale(time_scale)
	4.3 Initial Conditions (IC)
	4.3.1 IC input format (ic_input_filename)
	4.3.2 IC input reference system (ic_input_refsys)

	4.4 Using Pseudo observations
	4.5 Orbit arc length
	4.6 External Orbit Comparison
	4.6.1 External orbit reference frame (ext_orbit_frame)

	4.7 Earth Orientation Parameters
	4.7.1 EOP type
	4.7.2 IAU Precession-Nutation model

	4.8 Input files
	4.9 Output options
	4.10 Variational Equation Options
	4.11 General Options
	4.12 Apriori solar radiation models
	4.12.1 Estimated Solar radiation models
	4.12.2 gravity_model
	4.12.3 stochastic pulse (pulse)

	4.13 Inclusions/Exclusions
	4.14 EQM/VEQ options
	4.14.1 Integration Step
	4.14.2 Gravity Field
	4.14.3 planetary_perturbations:
	4.14.4 tidal_effects:

	4.15 relativistic_effects:
	4.16 non_gravitational_effects:
	4.16.1 Models to be applied:
	4.16.2 Empirical parameters

	4.17 overides*

	5 Overview of the PEA
	5.1 Data Input and Synchronisation
	5.1.1 Config
	5.1.2 Product Input
	5.1.3 Metadata Input
	5.1.4 Observation Data Input
	5.1.5 Initialisation of Objects

	5.2 Preprocessor
	5.3 Precise Point Positioning
	5.3.1 Force and Dynamic Models
	5.3.2 Orbit and State Prediction
	5.3.3 Phenomena Modelling + Estimation
	5.3.4 Initialisation of Parameters
	5.3.5 Robust Kalman Filter
	5.3.6 RTS Smoothing
	5.3.7 Integer Ambiguity Resolution
	5.3.8 Product calculation

	5.4 Post-processing
	5.4.1 Smoothing
	5.4.2 Minimum Constraints
	5.4.3 Unit Testing
	5.4.4 Logging

	6 Using PEA in network mode
	6.1 Processing a Global Network to Adjust Satellite Positions
	6.2 Post process estimation of Satellite clocks and biases
	6.3 Real-time estimation of Satellite clocks and biases
	6.4 Post process estimation of atmospheric delays

	7 Using PEA in user mode
	7.1 Receiver position
	7.2 Receiver clock
	7.3 Tropospheric delays
	7.4 Dual frequency PPP with floating ambiguities
	7.5 Single frequency PPP
	7.6 Dual frequency PPP with ambiguity resolution
	7.7 Real-time PPP

	8 PEA examples
	9 PEA Configuration File - YAML
	9.1 YAML Syntax
	9.2 Default Values
	9.3 Globbing
	9.4 Wildcard Tags
	9.5 input_files:
	9.6 station_data:
	9.6.1 Post processing:
	9.6.1.1 Real-time processing:

	9.7 output_files:
	9.8 processing_options:
	9.9 troposphere:
	9.10 ionosphere:
	9.11 unit_test_options:
	9.12 ionosphere_filter_parameters:
	9.13 output_options:
	9.14 user_filter_parameters, network_filter_parameters, ionosphere_filter_parameters:
	9.15 default_filter_parameters:
	9.16 minimum_constraints:
	9.17 ambiguity_resolution_options:

	10 Attribution

