Models

UncoverML has a variety of algorithms to choose from.

Config shows the algorithm parameter to add to the learning block of the config to use the model.

The majority of models are subclassed from models available in scikit-learn or the NICTA Revrand package. Follow the links under Documentation and parameters to view the specific model documentation and available parameters from these resources.

Additional parameters covers parameters specific to UncoverML that can be added to the arguments section of the learning block.

Regressors

Random Forest

Config:

algorithm: randomforest

Documentation and parameters:

Additional parameters:

  • target_transform

Multi Random Forest

An ensemble of Random Forest predictors.

Config:

algorithm: multirandomforest

Documentation and parameters:

Additional parameters:

  • target_transform

  • forests: number of Random Forest submodels

  • parallel: boolean, whether to train this model in parallel

Bayes Regression/Standard Linear Model

Config:

algorithm: bayesreg

Documentation and parameters:

Additional parameters:

  • target_transform

Stochastic Gradient Descent Bayes Regression/Standard Linear Model

Config:

algorithm: sgdbayesreg

Documentation and parameters:

Additional parameters:

  • target_transform

Approximate Gaussian Process

Subclass of Bayes Regression/Standard Linear Model

Config:

algorithm: approxgp

Documentation and parameters:

Additional parameters:

  • target_transform

Stochastic Gradient Descent Approximate Gaussian Process

Subclass of Stochastic Gradient Descent Bayes Regression/Standard Linear Model

Config:

algorithm: sgdapproxgp

Documentation and parameters:

Additional parameters:

  • target_transform

Support Vector Regression

Config:

algorithm: svr

Documentation and parameters:

Additional parameters:

  • target_transform

Automatic Relevance Determination Regression

Config:

algorithm: ardregression

Documentation and parameters:

Additional parameters:

  • target_transform

Decision Tree

Config:

algorithm: decisiontree

Documentation and parameters:

Additional parameters:

  • target_transform

Extra Tree

Config:

algorithm: extratree

Documentation and parameters:

Additional parameters:

  • target_transform

Cubist

Config:

algorithm: cubist

Documentation and parameters:

Additional parameters:

  • target_transform

Multi Cubist

Config:

algorithm: multicubist

Documentation and parameters:

Additional parameters:

  • target_transform

  • trees: number of Cubist submodels to train

  • parallel: boolean, whether to train this model in parallel

K Nearest Neighbour

Config:

algorithm: nnr

Documentation and parameters:

Additional parameters:

  • target_transform

Bootstrapped SVR

Allows probabilistic predictions for SVR by taking statistics from an ensemble of SVR models predicting on bootstrapped (resampled) data.

Config:

algorithm: bootstrapsvr

Documentation and parameters:

Additional parameters:

  • target_transform

  • n_models: int, number of models to train (i.e. number of times to resample data)

  • parallel: boolean, whether to train this model in parallel

Random Forest (Optimisable)

This is a subclass of Random Forest structured to be compatible with optimisation.

Config:

algorithm: transformedrandomforest

Documentation and parameters:

Additional parameters:

  • target_transform

Gradient Boost (Optimisable)

Config:

algorithm: gradientboost

Documentation and parameters:

Additional parameters:

  • target_transform

Gaussian Process Regressor (Optimisable)

Config:

algorithm: transformedgp

Documentation and parameters:

Additional parameters:

  • target_transform

Stochastic Gradient Descent Regressor (Optimisable)

Config:

algorithm: sgdregressor

Documentation and parameters:

Additional parameters:

  • target_transform

Support Vector Regression (Optimisable)

Duplicate of Support Vector Regression structured to be compatible with optimisation.

Config:

algorithm: transformedsvr

Documentation and parameters:

Additional parameters:

  • target_transform

Ordinary Least Squares Regression (Optimisable)

Subclass of base scikit-learn LinearRegression.

Config:

algorithm: ols

Documentation and parameters:

Additional parameters:

  • target_transform

Elastic Net (Optimisable)

Config:

algorithm: elasticnet

Documentation and parameters:

Additional parameters:

  • target_transform

Huber (Optimisable)

Config:

algorithm: huber

Documentation and parameters:

Additional parameters:

  • target_transform

XGBoost (Optimisable)

Config:

algorithm: xgboost

Documentation and parameters:

Additional parameters:

  • target_transform

Interpolators

Linear ND Interpolator

Config:

algorithm: linear

Documentation and parameters:

Nearest ND Interpolator

Config:

algorithm: nn

Documentation and parameters:

RBF Interpolator

Config:

algorithm: rbf

Documentation and parameters:

CT Interpolator

Config:

algorithm: cubic2d

Documentation and parameters:

Classifiers

Label encoding is performed implicitly on UncoverML classifiers.

Logistic Classifier

Config:

algorithm: logistic

Documentation and parameters:

Logistic RBF Classifier

Kernelized version of LogisticClassifier

Config:

algorithm: logisticrbf

Documentation and parameters:

Random Forest Classifier

Config:

algorithm: forestclassifier

Documentation and parameters:

Support Vector Classifier

Config:

algorithm: svc

Documentation and parameters:

Boosted Trees

Config:

algorithm: boostedtrees

Documentation and parameters: