Models¶
UncoverML has a variety of algorithms to choose from.
Config shows the algorithm
parameter to add to the learning
block of the
config to use the model.
The majority of models are subclassed from models available in scikit-learn or the NICTA Revrand package. Follow the links under Documentation and parameters to view the specific model documentation and available parameters from these resources.
Additional parameters covers parameters specific to
UncoverML that can be added to the arguments
section of the learning
block.
Regressors¶
Random Forest¶
Config:
algorithm: randomforest
Documentation and parameters:
Additional parameters:
target_transform
Multi Random Forest¶
An ensemble of Random Forest predictors.
Config:
algorithm: multirandomforest
Documentation and parameters:
Additional parameters:
target_transform
forests
: number of Random Forest submodelsparallel
: boolean, whether to train this model in parallelIf
parallel
is True, this model can be trained using multiple processors. See Multiprocessing and Partitioning.
Bayes Regression/Standard Linear Model¶
Config:
algorithm: bayesreg
Documentation and parameters:
Additional parameters:
target_transform
Stochastic Gradient Descent Bayes Regression/Standard Linear Model¶
Config:
algorithm: sgdbayesreg
Documentation and parameters:
Additional parameters:
target_transform
Approximate Gaussian Process¶
Subclass of Bayes Regression/Standard Linear Model
Config:
algorithm: approxgp
Documentation and parameters:
Additional parameters:
target_transform
Stochastic Gradient Descent Approximate Gaussian Process¶
Subclass of Stochastic Gradient Descent Bayes Regression/Standard Linear Model
Config:
algorithm: sgdapproxgp
Documentation and parameters:
Additional parameters:
target_transform
Support Vector Regression¶
Config:
algorithm: svr
Documentation and parameters:
Additional parameters:
target_transform
Automatic Relevance Determination Regression¶
Config:
algorithm: ardregression
Documentation and parameters:
Additional parameters:
target_transform
Decision Tree¶
Config:
algorithm: decisiontree
Documentation and parameters:
Additional parameters:
target_transform
Extra Tree¶
Config:
algorithm: extratree
Documentation and parameters:
Additional parameters:
target_transform
Cubist¶
Config:
algorithm: cubist
Documentation and parameters:
Additional parameters:
target_transform
Multi Cubist¶
Config:
algorithm: multicubist
Documentation and parameters:
Additional parameters:
target_transform
trees
: number of Cubist submodels to trainparallel
: boolean, whether to train this model in parallelIf
parallel
is True, this model can be trained using multiple processors. See Multiprocessing and Partitioning.
K Nearest Neighbour¶
Config:
algorithm: nnr
Documentation and parameters:
Additional parameters:
target_transform
Bootstrapped SVR¶
Allows probabilistic predictions for SVR by taking statistics from an ensemble of SVR models predicting on bootstrapped (resampled) data.
Config:
algorithm: bootstrapsvr
Documentation and parameters:
Additional parameters:
target_transform
n_models
: int, number of models to train (i.e. number of times to resample data)parallel
: boolean, whether to train this model in parallelIf
parallel
is True, this model can be trained using multiple processors. See Multiprocessing and Partitioning.
Random Forest (Optimisable)¶
This is a subclass of Random Forest structured to be compatible with optimisation.
Config:
algorithm: transformedrandomforest
Documentation and parameters:
Additional parameters:
target_transform
Gradient Boost (Optimisable)¶
Config:
algorithm: gradientboost
Documentation and parameters:
Additional parameters:
target_transform
Gaussian Process Regressor (Optimisable)¶
Config:
algorithm: transformedgp
Documentation and parameters:
Additional parameters:
target_transform
Stochastic Gradient Descent Regressor (Optimisable)¶
Config:
algorithm: sgdregressor
Documentation and parameters:
Additional parameters:
target_transform
Support Vector Regression (Optimisable)¶
Duplicate of Support Vector Regression structured to be compatible with optimisation.
Config:
algorithm: transformedsvr
Documentation and parameters:
Additional parameters:
target_transform
Ordinary Least Squares Regression (Optimisable)¶
Subclass of base scikit-learn LinearRegression.
Config:
algorithm: ols
Documentation and parameters:
Additional parameters:
target_transform
Elastic Net (Optimisable)¶
Config:
algorithm: elasticnet
Documentation and parameters:
Additional parameters:
target_transform
Huber (Optimisable)¶
Config:
algorithm: huber
Documentation and parameters:
Additional parameters:
target_transform
XGBoost (Optimisable)¶
Config:
algorithm: xgboost
Documentation and parameters:
Additional parameters:
target_transform
Interpolators¶
Classifiers¶
Label encoding is performed implicitly on UncoverML classifiers.
Logistic RBF Classifier¶
Kernelized version of LogisticClassifier
Config:
algorithm: logisticrbf
Documentation and parameters: