uncoverml.optimise package¶
Submodules¶
uncoverml.optimise.models module¶
12-05-2020 15:50:35 AEST - brenainn.moushall@ga.gov.au
Note
Only some models are compatible with optimisation. This is because models must be structued in a way compatible with scikit-learn’s GridSearchCV. This involves:
having all arguments explicitly listed in the
__init__
signature (no varargs)having the expected functions (
fit
,predict
, etc.)implemeting the
get_params
andset_params
functions defined by Base Estimator
# TODO: refactor all models to have an interface compatible with GCV # and consolidate to a single module.
-
class
uncoverml.optimise.models.
Huber
(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05, target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformMixin
,uncoverml.models.TagsMixin
,sklearn.linear_model._huber.HuberRegressor
Robust HuberRegressor
-
class
uncoverml.optimise.models.
TransformMixin
¶ Bases:
object
-
fit
(X, y, *args, **kwargs)¶
-
predict
(X, *args, **kwargs)¶
-
-
class
uncoverml.optimise.models.
TransformPredictDistMixin
¶ Bases:
uncoverml.optimise.models.TransformMixin
-
predict_dist
(X, interval=0.95, *args, **kwargs)¶
-
-
class
uncoverml.optimise.models.
TransformedElasticNet
(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic', target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformMixin
,uncoverml.models.TagsMixin
,sklearn.linear_model._coordinate_descent.ElasticNet
Linear regression with combined L1 and L2 priors as regularizer. Suitable for small learning jobs.
-
class
uncoverml.optimise.models.
TransformedForestRegressor
(target_transform='identity', n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False)¶ Bases:
uncoverml.optimise.models.TransformPredictDistMixin
,uncoverml.models.RandomForestRegressor
,uncoverml.models.TagsMixin
-
class
uncoverml.optimise.models.
TransformedGPRegressor
(target_transform='identity', kernel=None, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None)¶ Bases:
uncoverml.optimise.models.TransformPredictDistMixin
,sklearn.gaussian_process._gpr.GaussianProcessRegressor
,uncoverml.models.TagsMixin
-
predict
(X, *args, **kwargs)¶ Predict using the Gaussian process regression model
We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note that at most one of the two can be requested.
- Parameters
X (sequence of length n_samples) – Query points where the GP is evaluated. Could either be array-like with shape = (n_samples, n_features) or a list of objects.
return_std (bool, default: False) – If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean.
return_cov (bool, default: False) – If True, the covariance of the joint predictive distribution at the query points is returned along with the mean
- Returns
y_mean (array, shape = (n_samples, [n_output_dims])) – Mean of predictive distribution a query points
y_std (array, shape = (n_samples,), optional) – Standard deviation of predictive distribution at query points. Only returned when return_std is True.
y_cov (array, shape = (n_samples, n_samples), optional) – Covariance of joint predictive distribution a query points. Only returned when return_cov is True.
-
predict_dist
(X, interval=0.95, *args, **kwargs)¶
-
-
class
uncoverml.optimise.models.
TransformedGradientBoost
(target_transform='identity', loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_split=1e-07, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')¶ Bases:
uncoverml.optimise.models.TransformMixin
,sklearn.ensemble._gb.GradientBoostingRegressor
,uncoverml.models.TagsMixin
-
class
uncoverml.optimise.models.
TransformedOLS
(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1, target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformMixin
,uncoverml.models.TagsMixin
,sklearn.linear_model._base.LinearRegression
OLS. Suitable for small learning jobs.
-
class
uncoverml.optimise.models.
TransformedSGDApproxGP
(kernel='rbf', nbases=50, lenscale=1.0, var=1.0, regulariser=1.0, ard=True, maxiter=3000, batch_size=10, alpha=0.01, beta1=0.9, beta2=0.99, epsilon=1e-08, random_state=None, target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformMixin
,uncoverml.models.SGDApproxGP
,uncoverml.models.TagsMixin
-
class
uncoverml.optimise.models.
TransformedSGDRegressor
(loss='squared_loss', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, warm_start=False, average=False, target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformPredictDistMixin
,sklearn.linear_model._stochastic_gradient.SGDRegressor
,uncoverml.models.TagsMixin
Linear elastic net regression model using Stochastic Gradient Descent (SGD).
-
class
uncoverml.optimise.models.
TransformedSVR
(kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=- 1, target_transform='identity')¶ Bases:
uncoverml.optimise.models.TransformMixin
,sklearn.svm._classes.SVR
,uncoverml.models.TagsMixin
-
class
uncoverml.optimise.models.
XGBoost
(target_transform='identity', max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='reg:linear', nthread=1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, n_jobs=- 1, base_score=0.5, random_state=1, missing=None)¶ Bases:
uncoverml.optimise.models.TransformMixin
,uncoverml.models.TagsMixin
,xgboost.sklearn.XGBRegressor
uncoverml.optimise.scorers module¶
Wrappers around model scoring metrics so they can be used in GridSearchCV.