Ginan
Loading...
Searching...
No Matches
KFMeas Struct Reference

Object to hold measurements, design matrices, and residuals for multiple observations. More...

Detailed Description

Object to hold measurements, design matrices, and residuals for multiple observations.

Collaboration diagram for KFMeas:

Public Member Functions

 KFMeas ()
 
 KFMeas (KFMeas &kfMeas, vector< Triplet< double > > &&triplets, vector< KFKey > &&obsKeys, vector< map< string, void * > > &&metaDataMaps)
 
 KFMeas (KFState &kfState, KFMeasEntryList &kfEntryList, GTime measTime=GTime::noTime(), MatrixXd *noiseMatrix_ptr=nullptr)
 Combine a list of KFMeasEntrys into a single KFMeas object for used in the filter.
 
int getNoiseIndex (const KFKey &key) const
 Finds the position in the noise vector of particular noise elements.
 
template<class ARCHIVE >
void serialize (ARCHIVE &ar, const unsigned int &version)
 

Data Fields

GTime time = GTime::noTime()
 Epoch these measurements were recorded.
 
VectorXd Y
 Value of the observations (for linear systems)
 
VectorXd V
 Prefit Residual of the observations (for non-linear systems)
 
VectorXd VV
 Postfit Residual of the observations (for non-linear systems)
 
VectorXd W
 Weight (inverse of noise) used in least squares.
 
MatrixXd R
 Measurement noise for these observations.
 
MatrixXd H
 Design matrix between measurements and state.
 
MatrixXd H_star
 Design matrix between measurements and noise states.
 
VectorXd uncorrelatedNoise
 Uncorellated noise for measurements.
 
map< KFKey, intnoiseIndexMap
 Map from key to indexes of parameters in the noise vector.
 
vector< KFKeyobsKeys
 Vector of optional labels for reporting when measurements are removed etc.
 
vector< map< string, void * > > metaDataMaps
 
vector< map< E_Component, ComponentsDetails > > componentsMaps
 

Constructor & Destructor Documentation

◆ KFMeas() [1/3]

KFMeas::KFMeas ( )
inline

◆ KFMeas() [2/3]

KFMeas::KFMeas ( KFMeas & kfMeas,
vector< Triplet< double > > && triplets,
vector< KFKey > && obsKeys,
vector< map< string, void * > > && metaDataMaps )
inline
Parameters
kfMeasMeasurement to form linear combination from
tripletsLinear combination triplets
obsKeysNew obs key vector
metaDataMapsOptional new metadata vector

◆ KFMeas() [3/3]

KFMeas::KFMeas ( KFState & kfState,
KFMeasEntryList & kfEntryList,
GTime measTime = GTime::noTime(),
MatrixXd * noiseMatrix_ptr = nullptr )

Combine a list of KFMeasEntrys into a single KFMeas object for used in the filter.

Parameters
kfStateFilter state to correspond to
kfEntryListList of input measurements as lists of entries
measTimeTime to use for measurements and hence state transitions
noiseMatrix_ptrOptional pointer to use custom noise matrix
Here is the call graph for this function:

Member Function Documentation

◆ getNoiseIndex()

int KFMeas::getNoiseIndex ( const KFKey & key) const

Finds the position in the noise vector of particular noise elements.

Parameters
keyKey to search for in noise vector
Here is the caller graph for this function:

◆ serialize()

template<class ARCHIVE >
void KFMeas::serialize ( ARCHIVE & ar,
const unsigned int & version )
inline

Field Documentation

◆ componentsMaps

vector<map<E_Component, ComponentsDetails> > KFMeas::componentsMaps

◆ H

MatrixXd KFMeas::H

Design matrix between measurements and state.

◆ H_star

MatrixXd KFMeas::H_star

Design matrix between measurements and noise states.

◆ metaDataMaps

vector<map<string, void*> > KFMeas::metaDataMaps

◆ noiseIndexMap

map<KFKey, int> KFMeas::noiseIndexMap

Map from key to indexes of parameters in the noise vector.

◆ obsKeys

vector<KFKey> KFMeas::obsKeys

Vector of optional labels for reporting when measurements are removed etc.

◆ R

MatrixXd KFMeas::R

Measurement noise for these observations.

◆ time

GTime KFMeas::time = GTime::noTime()

Epoch these measurements were recorded.

◆ uncorrelatedNoise

VectorXd KFMeas::uncorrelatedNoise

Uncorellated noise for measurements.

◆ V

VectorXd KFMeas::V

Prefit Residual of the observations (for non-linear systems)

◆ VV

VectorXd KFMeas::VV

Postfit Residual of the observations (for non-linear systems)

◆ W

VectorXd KFMeas::W

Weight (inverse of noise) used in least squares.

◆ Y

VectorXd KFMeas::Y

Value of the observations (for linear systems)


The documentation for this struct was generated from the following files: